
An Algorithm for Finding the Smallest Set of Smallest Rings 

ANTONIO ZAMORA 

Chemical Abstracts Service, The Ohio State University, Columbus, Ohio 43210 

Received October 16, 1975 

This paper describes an algorithm which finds the smallest set of smallest rings of a ring system 
without the necessity of finding all rings in the ring system. The algorithm first finds the smallest 
rings in which unused atoms occur and then progresses to find the smallest rings in which unused 
edges and faces occur until the smallest set of rings required to describe the complete ring system 
is found. The algorithm converges quickly because the lengths of the paths that need to be scanned 
to discover each new ring decrease when a smaller ring is found. 

INTRODUCTION 

Chemical information systems have traditionally handled 
cyclic chemical compounds on the basis of their structural 
characteristics, such as ring sizes and atom population of rings. 
Since a ring system can have many different sets of rings which 
describe it equally well, it is customary to characterize a ring 
by the smallest set of smallest rings (SSSR). “The Ring 
Index”’ and notation systems such as that originated by 
Wiswesserz make use of the smallest set of smallest rings. 

The minimum number of rings required to describe a ring 
system is easy to obtain. It corresponds to the number of cuts 
required to convert the ring system into a single open-chain 
structure and is given by the equation: 

RINGS = EDGES - ATOMS + 1 

where the number of edges is the number of distinct 
atom-to-atom connections. 

For a ring system with indistinguishable nodes, the atom 
population of the rings is dependent only on the ring sizes. 
However, for heterocyclic ring systems which have distinct 
nodes, the atom population can depend on the subset of rings 
selected even when the SSSR is selected. Thus the atom 
population or elemental ring analysis for 1 can be either 

C4Nz-C4Nz-C6 or C4N2-CeC6. A chemical information 
system may choose between these two elemental ring analyses 
based on the best locant numbering for the corresponding 
chemical name or linear notation. 

Welch3 and Gibbs4 have provided methods for finding all 
the rings of a ring system by starting from an arbitrary set 
of fundamental cycles, and Gotlieb and Cornei1,s Paton,6 and 
Tiernan7 have described algorithms for finding fundamental 
cycles. 

Obtaining the SSSR, as shown by Plotkin,* is a conceptually 
simple procedure. In essence, all the rings of a given structure 
are sorted by ring size. The smallest ring is always assigned 
to the SSSR. Rings other than the first are examined in 
ascending sequence by ring size and are added to the SSSR 
only if they are linearly independent from any rings previously 
added to the SSSR. If the rings are subjected to a secondary 
ordering by elemental composition, in addition to size, it is also 
possible to select a preferred elemental ring analysis for the 
structure. In practice this procedure is quite time consuming 
even with today’s computers, and for this reason alternative 
procedures are still being sought. 

This paper presents a path-tracing algorithm for finding the 
SSSR; the algorithm can easily be modified to also give an 
elemental ring analysis. Where more than one elemental ring 
analysis exists for a ring system, the one selected will depend 

on the parameters coded in the algorithm. This algorithm is 
currently used at Chemical Abstracts Service to edit the output 
of a program which generates Wiswesser Line Notations.9 
Although the algorithm has some limitations, the occurrence 
of ring systems for which these limitations are evident is rare. 

CLASSES OF RING SYSTEMS 

For the purpose of this study, ring systems are subdivided 

Type I. Ring systems for which no subset of the smallest 
rings contains all the atoms of the ring system (2). 

into three types: 

@ SSSR : 5.6.6.6 

Type 11. Ring systems for which all the atoms but not all 
the edges of the ring system are contained by a 
subset of the smallest rings, for example, in 3 the 
two shaded rings contain all the atoms but do not 
contain two of the edges. 

3 
S S S R  . 5.5.6 

Type 111. Ring systems for which all the atoms and all the 
edges of the ring system are contained by a subset 
of the smallest rings (4, 5, and 6) .  

4 5 6 
SSSR : 3.3.3.3.4 SSSR : 4 . 4 . 4 . 4  . 4  SSSR ~ 4 , 4 . 4 , 4 , 5 , 5  

SELECTION OF SSSR. PHASE 1 

The SSSR can be found for ring systems of type I by 
randomly selecting an unused atom and finding the smallest 
ring which contains that atom. The atoms comprising the 
smallest ring found are marked used, and the process is re- 
peated until all atoms are marked used. 

This procedure will also give the SSSR for certain ring 
systems that are not of type I but can be reduced to type I 
by proper selection of the starting atom and by selection of 
rings with the greatest number of used atoms when there is 
a choice between rings of the same size. The following ex- 
amples illustrate how, by judicious rather than random se- 
lection of the rings and the starting atoms, certain ring systems 
can be reduced to type I. If the shaded rings in 7a were found 
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SSSR : 6.6.6 

7a 7b 

first, all the atoms would have been marked used before all 
the rings had been found. However, by selecting as the second 
ring a ring that has the greatest number of used atoms (still 
starting from an unused atom), two unused atoms will remain 
for the last ring as shown in 7b. 

For a structure suc'h as 8 the choice of a starting atom, as 

SSSR 6.6.6.6.6.6.6 

well as the first ring, can make a significant difference; if the 
central ring is isolated first, the peripheral rings can be found 
as before, since each one will have two atoms not shared by 
any other ring. 

The central ring can be found by use of a property of the 
graph called connectivity. For the purposes of this algorithm 
connectivity is defined as follows: 

Let K l  = 1, 8, or 64 depending on whether atom i has 2 ,  
3, or 4 attachments, respectively. (Four is an arbitrary limit 
within this algorithm.) 

Let L be the sum of the K values of the atoms to which 
atom i is attached; the connectivity of atom i is then C, = 

Thus, the connectivity of an atom depends primarily on its 
number of attachments, but is also influenced by the envi- 
ronment of the attached atoms. Note that for 8 the atoms of 
the central ring have the greatest connectivity. 

The SSSR for 8 can be found by selecting as the starting 
atom the unused atom with the greatest connectivity and then 
selecting the smallest ring that contains the atom. If more 
than one such ring exists, the ring containing the atoms with 
the greatest connectivity sum is selected. The atoms of the 
selected ring are marked used, and the process is repeated until 
all atoms are marked used. 

The procedure given above (PHASE 1 of the SSSR algorithm) 
gives the SSSR for type I ring systems and those which can 
be reduced to type I. Ring systems for which PHASE 1 does 
not give all the expected rings (known from the equation: 
RINGS = EDGES - ATOMS + 1) are subsequently ex- 
amined by PHASE 2 and, if necessary, by PHASE 3 of the a]- 
gorithm to produce thl: SSSR. The SSSR algorithm, then, 
consists of three phases applied in succession and terminating 
as soon as the SSSR is found. 

SELECTION OF SSSR. PHASE 2 

The SSSR for ring systems of type I1 can be found by means 
of a usage counter which records the number of times each 
edge has been used as each ring is selected. If any edges 
remain unused after PHASE I ,  the smallest ring in which an 
unused edge occurs is selected and the usage counters of the 
edges in the selected ring are incremented. The process is 
repeated until all edges have been used. When there is a choice 
between rings of the same size, the ring with the greatest 
number of used edges is selected. 

64(K1) + Lr. 

SELECTION OF SSSR. PHASE 3 

If all the rings have riot been found after all the atoms and 
edges have been used, we proceed to find all unused faces of 
the ring system and choose as many of the smallest faces as 
are required to fully describe the ring system. An unused face 

is defined here as a ring consisting exclusively of atoms having 
at least three attachments. Furthermore, only one of the edges 
of the ring is allowed to have been used more than once; all 
other edges must have a usage count of one. 

It should be noted that on occasion the algorithm may need 
to choose between more than one ring during PHASE 3. For 
example, in 9 the choice of the final ring will be between the 

9 
S S S R :  3 .4 .4 .4 .4 .4 .5  

internal pentagon and the peripheral hexagon. In 6, however, 
only the pentagon is available as a final choice since the 
peripheral hexagon does not meet the definition of an unused 
face. 

THE ALGORITHM 

A ring-finding algorithm is presented here followed by the 
SSSR algorithm which incorporates all the features described 
above. Rings are found by tracing paths that eventually 
terminate at the starting atom. All such paths which do not 
exceed the number of atoms of the smallest ring found pre- 
viously are tried. Thus, each time a smaller ring is found, the 
length of the paths that need to be scanned also decreases. 

DEFINITIONS 

FIRST 

S M  
SIZE 

GRAPH[ij ]  
A Lil 

Xb l  

P[kI 

USEU] 

BEST [ k] 

The atom selected as the first atom of the path; 
the ring-finding algorithm will select the 
smallest ring containing this atom 
Size of the smallest ring found 
Number of atoms in the current path 
Number of attachments to atom j 
Graph description where i = 1, 2, ..., Ab]  
defines the atoms to which a t o m j  is attached 
and j = 1, ..., N where N is the number of 
atoms in the graph. 
The attachment to thejth atom currently being 
examined (1 I Xu]  I Ab])  
List of atoms in the current path, k = 1, ..., 
SIZE 
Usage indicator USEb] = 1 if atom j is in 
P[k]; otherwise it is zero 
List of atoms in the smallest ring k = 1, ..., SM 

RING-FINDING ALGORITHM 

/* INITIALIZATION */ 
S M - N + l  
x+-0 
SIZE + 1 
P[SIZE] - FIRST 
CURRENT - FIRST 
USE[FIRST] - 1 

/*  PATH EXPLORATION */ 

IF  X[CURRENT] > A[CURRENT] GO TO SCAN 
ALPHA: X[CURRENT] - X[CURRENT] + 1 

ATTACHED + GRAPH [XICURRENT1 .CUR- . -  - ,  

RENT] 
IF  SIZE > 1 & ATTACHED = P[SIZE-l] GO TO 

ALPHA 
IF  USE[ATTACHED] = 1 GO TO BETA 

/* PATH EXTENSION */ 
SIZE - SIZE + 1 
P[SIZE] + ATTACHED 
USE[ATTACHED] - 1 
CURRENT - ATTACHED 
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IF  SIZE > SM GO TO SCAN 
GO TO ALPHA 

/* RING CONFIRMATION */ 

/* A RING HAS BEEN FOUND */ 
BETA: IF  ATTACHED # FIRST GO TO ALPHA 

IF  SIZE < SM GO TO BETTER 
/* THE RINGS ARE O F  EQUAL SIZE -- INSERT 

CRITERIA FOR CHOICE AT THIS POINT. 
IF  THE RING IS NOT BETTER GO TO SCAN */ 

BETTER: SM - SIZE 

/* SCAN BACKWARDS ALONG PATH */ 
BEST - P 

SCAN: X[CURRENT] - 0 
USE[CURRENT] - 0 

CURRENT - P[SIZE] 
IF  SIZE = 1 & XICURRENT] + 1 2 A[CURRENT] 
GO TO DONE 
GO TO ALPHA 

SIZE - SIZE - 1 

DONE: 
/*  THE SMALLEST RING IS IN BEST[ 1:SM] */ 
END 
To find the smallest ring with a specific edge, the initial- 

ization of the ring-finding algorithm is as follows: 
S M - N + l  
x + - 0  
P[1] - FIRST 
P[2] - SECOND 
X[FIRST] - A[FIRST] 
SIZE - 2 
USE[FIRST] - 1 
USE[SECOND] - 1 
CURRENT - SECOND 
GO TO ALPHA 

The variables FIRST and SECOND in this case represent 
the two nodes joined by the edge. 

SSSR ALGORITHM DESCRIPTION 

PHASE 1 
1. Select the unused atom that has the greatest connec- 

tivity; if there are no unused atoms go to PHASE 2. 
2. Apply the ring-finding algorithm with the following 

modifications: 
a. During path extension add the connectivities of the 

atoms in the path and keep a count of the number of 
used atoms in the path. Also record the number and 
kind of non-carbon atoms present if an elemental ring 
analysis is desired. 

b. If there is a choice between rings of equal size, choose 
the ring that has (i) the greatest number of used atoms; 
(ii) the greatest number of used edges; (iii) the greatest 
connectivity sum; (iv) the preferred elemental analysis. 

c. When scanning backwards along the path, decrement 
the connectivity sum and restore other ring selection 
variables altered during path extension. 

3. Mark the atoms of the selected ring “USED.” 
4. Increment the usage count of each edge of the ring by 

one. 
5. Go to 1. 

6 .  Mark all the atoms “NOT USED.” 
7 .  If the number of rings found is equal to the smallest set 

of rings, go to END. 
8. Select an unused edge, if no unused edges remain, go 

9. Apply the ring-finding algorithm with the same mod- 
ifications as PHASE i .  

10. Mark the atoms of the selected ring “USED.” 

PHASE 2 

to PHASE 3.  

1 1. Increment the usage count of each edge of the ring by 

12. Go to 7 .  
1. 

PHASE 3 
13. 

14. 
15. 

16. 
17. 

18. 

19. 
20. 

21. 

Select an edge with a usage count of one. If none are 
present go to 20. 
Set the usage count of the selected edge equal to two. 
Apply the ring-finding algorithm with the following 
modifications: path extension is done only if both atoms 
of the edge have at least three attachments and if the 
number of edges in the path with usage count of two or 
greater does not exceed one. 
If a ring is not found, go to 13. 
If a ring is found, save the ring and its associated el- 
emental analysis. 
Increment the usage counts of the edges of the ring by 
one. 
Go to 13. 
Sort the rings found by PHASE 3 in increasing order by 
size and in preferred elemental analysis sequence. 
Select rings from the sorted set, starting from the 
smallest ring, until the total number of rings selected 
eauals the smallest set of rings. 

END. End of SSSR algorithm. 
- 

ALGORITHM LIMITATIONS 

An unused face has been defined as a ring consisting of 
atoms having at least three attachments with no more than 
one edge of the ring exceeding a usage count of one. This 
definition takes advantage of the fact that PHASE 1 and PHASE 
2 of the algorithm will always maximize the usage counts of 
the edges when a choice of rings is possible. Thus, it is assumed 
in PHASE 3 that nonelementary rings or previously discovered 
rings would be found by using more than one edge with usage 
count of two or greater. This assumption is not always correct 
and leads to two types of errors. The failures appear to be 
restricted to situations where all the edges of the final ring are 
contained in several smaller rings and several edges of the final 
ring are used more than once. Structure 10 shows a case where 

IO 

the final ring found by PHASE 3 would be a hexagon rather than 
a pentagon. The pentagon in this case has two edges with 
usage counts of two which disqualify it from being an “unused 
face”. Edges that have been used twice are darkened in 10. 
This is a theoretical example; no real case has been en- 
countered. 

The next example (11) illustrates a case where rather than 

S S S R :  3 . 3 . 3 . 4 . 4 . 4 . 4 . 4 . 5  

n 

11 
S S S R :  5.5.6.6.6.6.6.6.8 

finding a ring of the wrong size, PHASE 3 fails to find the final 
eight-atom ring. Of the four distinct eight-atom rings present 
in the structure, all of them have two edges with usage count 
of two. The algorithm as programmed indicates this situation. 

It would be possible to extend the algorithm to find the final 
rings for most cases when PHASE 3 fails by obtaining a set of 
fundamental rings for atoms of the structure having three or 
more attachments and then applying the procedure outlined 
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in the Introduction. The total number of rings generated in 
this way would generally be far fewer than if all the atoms 
of the structure were included; this reduction is possible 
because the first two phases of the algorithm create a partial 
SSSR which could be used to select the missing rings. 
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CONCLUSION 
This paper has preslented a fairly comprehensive algorithm 

for finding the smallest set of smallest rings. The speed with 
which the smallest rings are found is dependent on the se- 
quence in which the paths are explored. This, in turn, depends 
on the way in which the atoms are numbered when input to 
the algorithm. Although the algorithm can be shown to fail 
in some cases, the ring systems for which it fails constitute a 
very minute portion of those which are chemically possible. 

The algorithm was programmed in PL/1 and required 258 
statements. It should be noticed that the basic procedure for 
finding the smallest set of smallest rings is independent of the 
technique used to implement the ring-finding algorithm. 
Although the ring-finding algorithm illustrated in this paper 
uses a path-tracing technique, other techniques such as growing 
a tree from the selected atom or atoms might offer advantages 
in particular situations. 
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Unique structures consistent with structural information are enumerated by means of the 
“connectivity stack”, the proper situation to provide an effective examination of the correct 
es,timation of each structure, complete or even under construction, as one of the members of 
thie “informational homologues”. Both cyclic and acyclic structures are treated. 

We have developed an integrated system for structure 
elucidation of organic compounds,l-4 and called it CHEM- 
ICS.5 The generic acronym CHEMICS stands for Combined 
Handling of Elucidation Methods for Interpretable Chemical 
Structures. It is a system for deducing all logically valid 
structures,6>7 acyclic and cyclic, on the basis of previously 
settled propositions according to input information concerned 
with the structure of a given compound. Each logically valid 
structure is defined a15 an informational homologue538 of 
provided structural information. If the information consists 
of only a molecular formula, the informational homologues 
are identical with structural isomers, whose members may even 
exceed millions.9 Their composition depends on only the nature 
of the provided information; that is, the richer the information, 
the fewer informational homologues there are. In order to 
enumerate them not only completely and uniquely but also 
as quickly as possible,l6 a new principle of enumeration has 
been devised and has yielded many results for CHEMICS,1-4 
though most are not published in the literature. It was recently 
known that the principle in the heuristic DENDRAL10,ll is 
very similar to ours because of mathematical permutation, 
though the object and order of application are different from 
each other. Mathematical permutation is one of the best ways 
for exhaustive enumeration, but really has practical value when 
hopeless branches of a logical tree are eliminated as early as 
possible. Balaban’s report12 directly stimulated publication 
of the original principle of our enumeration methods. 

REPRESENTATION OF THE STRUCTURES 

The enumeration part of CHEMICS combines static 
features with dynamic ones. The former is to carry out correct 
enumeration and the latter is to decrease execution time. How 
to represent structures goes along with both features. 

Component and Segment. Most chemical systems, e.g., 
DENDRAL,11 CAS/Morgan,13 IUPAC/Dyson,l4 WLN,15 
represent a structure with canonical connectivities and after 
this with segments under constraint of hierarchical orders, in 
their own peculiar ways. On the other hand, CHEMICS 
considers segments in a hierarchical order by their parent 
components first and secondly constructs a suitable connectivity 
representation according to the order. The two concepts, 
component and segment, correspond to chemical element and 
atom in general chemistry, respectively. That is, the com- 
ponent is a logical division of partial structures, and the 
segment is an entity with the component as property. After 
setting the components, each part of a whole molecule is always 
specified with exactly one component. Two conditions, (1) 
and ( 2 ) ,  define the concept of the component, Ci: 

UCi = all whole structures 

c i n C j  = 0 (i # 13 (2) 

(1 1 i 

There are many possible ways to set up components under the 
two conditions. There is no natural component set and a 
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