TO: Section 312 Engineers, J. F. Scott, W. Scholey FROM: M. A. Minovich SUBJECT: A Method For Determining Interplanetary Free-Fall Reconnaissance Trajectories This paper deals with determining round-trip trajectories for reconnaissance vehicles in free-fall motion when certain fundamental assumptions are assumed to hold. After solving the trajectory problem to one planet and back the more general problem of determining a free-fall reconnaissance trajectory to N planets before returning to the launch planet will be solved. No assumptions will be made as to the geometry of the solar system; indeed, it will not matter how eccentric the planets orbits are or how much their planes of motion differ from each other. Vector analysis is employed throughout the paper giving it a somewhat neat mathematical appearance which should offer interesting reading. As far as the author knows the method and results are new. The problem of finding an exact analytical solution for round-trip, free-fall recommaissance trajectories is, to say the least, not trivial. Consequently, in papers treating these problems certain simplifying assumptions are very common. In this paper we shall assume only the most basic: - I. When the vehicle (treated as a particle) is inside a "sphere of influence" \$\tau\$, centered at the center of the target planet, only the field of this body influences its motion. When the vehicle is outside \$\tau\$ only the sum influences its motion. - II. If At is the amount of time the vehicle spends in 7, At is small so that the planets motion can be assumed to be constant; its velocity being that velocity it has when the vehicle makes its closest approach. Before stating the last assumption suppose Σ is some inertial cartesian frame of reference with origin at the center of the sun. Let Σ be a moving frame with origin at the center of the target planet and whose axes are kept parallel to the corresponding axes of \sum . Then our second basic assumption implies that when the vehicle is in τ , \sum ' is an inertial frame. Consequently, during the time interval \triangle t the path of the vehicle with respect to \sum ' will be a hyperbolic conic section with the origin at one of its foci. The third fundamental assumption is now written as: III. $$\phi_{\infty} = \phi_{\rho*}$$ The vectors $\widehat{\rho}_1$ and $\widehat{\rho}_2$ are the position vectors of the vehicle as it enters and leaves \mathcal{T} with respect to the origin of Σ . The axes of Σ are not drawn since, in general, they will not be parallel to any of the above lines. It has been found that the best sphere of influence \mathcal{T} has radius ρ^* given by $$\rho^* = \left(\frac{m}{M}\right)^{\frac{2}{5}} e$$ where m and M are the masses of the target planet and sun, respectively; c is the distance between the target planet and the sun. By taking I, II and III to be our only assumptions we must deal with the three-dimensional character of the solar system. Consequently, the use of vector analysis is indispensable. Thus at this point, we digress to set up the necessary mathematical apparatus which shall be used throughout this paper. Newton's law of motion is $$m \frac{d\vec{V}}{dt} = -G \frac{Mm}{R^2} \hat{R}$$ where m is the mass of particle having velocity \overline{V} , M is the mass of a second particle, \widehat{R} is the unit vector in the direction from M to m; (Unit vectors shall be denoted by placing \bigwedge over letter instead of \longrightarrow), G is the gravitational constant. If M >> m we may assume that M is at rest, hence taking m = 1 and letting MG = μ (1) $$\frac{d\vec{V}}{dt} = -\mu \frac{\hat{R}}{R^2}$$ Since this implies $$\frac{d}{dt}(\hat{R} \times \hat{V}) = \frac{d\hat{R}}{dt} \times \hat{V} + \hat{R} \times \frac{d\hat{V}}{dt} = \hat{V} \times \hat{V} - \frac{\mu}{R^2} \hat{R} \times \hat{R} = 0,$$ integrating $$\frac{d}{dt}(\hat{R} \times \hat{V})$$ yields $$(2) \qquad \overrightarrow{R} \times \overrightarrow{V} = \overrightarrow{h}$$ where h is some constant vector of integration and is equal to the vector called angular momentum of m about M. This shows that R and \overline{V} must then be perpendicular to h, hence the motion of m takes place in a fixed plane. Writing $$\overrightarrow{V} = \frac{\overrightarrow{dR}}{dt} = \frac{d}{dt} (R \hat{R})$$ (2) can be expressed as $$\hat{h} = \hat{R} \times \hat{V} = R \frac{d}{dt} (R \hat{R}) = \hat{R} \times (R \frac{d \hat{R}}{dt} + \frac{dR}{dt} \hat{R}) = R^2 \hat{R} \times \frac{d \hat{R}}{dt}$$ Thus in view of (1) $$\frac{\overrightarrow{dV}}{dt} \times \overrightarrow{h} = -\mu \frac{\hat{R}}{R^2} \times R^2 (\hat{R} \times \frac{d\hat{R}}{dt})$$ $$= -\mu \left[(\hat{R} \cdot \frac{d\hat{R}}{dt}) \hat{R} - (\hat{R} \cdot \hat{R}) \frac{d\hat{R}}{dt} \right]$$ If θ is the angle between \overline{R} and some arbitrary line in the plane of motion $$\frac{d\hat{R}}{dt} = \frac{d\hat{R}}{d\theta} \frac{d\theta}{dt}$$ but $\frac{d\hat{R}}{d\theta}$ is perpendicular to \hat{R} hence $$\hat{R} \cdot \frac{d\hat{R}}{dt} = 0$$ yielding $$\frac{d\vec{v}}{dt} \times \vec{h} = \mu \frac{d\hat{R}}{dt} = \frac{d}{dt} (\mu \hat{R}) .$$ Now since h is a constant vector $$\frac{d}{dt}(\overrightarrow{V} \times \overrightarrow{h}) = \frac{d\overrightarrow{V}}{dt} \times \overrightarrow{h}$$ consequently, we obtain $$\frac{d}{dt}(\overrightarrow{\nabla} \times \overrightarrow{h}) = \frac{d}{dt}(\mu \hat{R})$$ whereupon integration yields (3) $$\overrightarrow{\nabla} \times \overrightarrow{h} = \mu(\widehat{R} + \overrightarrow{E})$$ where $\vec{\epsilon}$ is another constant of integration. Notice that since \vec{V} x \vec{h} is in the plane of motion so is $\vec{\epsilon}$. We also observe that \vec{h} and $\vec{\epsilon}$ are not independent of each other for if \vec{R} , \vec{V} and \vec{h} are known at any time t (4) $$\vec{\epsilon} = \frac{1}{\mu} \vec{\nabla} \times \vec{h} - \hat{R}$$ Now $$\vec{h} \times (\vec{v} \times \vec{h}) = (\vec{h} \cdot \vec{h}) \vec{v} - (\vec{h} \cdot \vec{v}) \vec{h} = \vec{h}^2 \vec{v}$$ Consequently, employing (3) we obtain the important formula (5) $$\overrightarrow{V} = \frac{\mu}{h^2} \overrightarrow{h} \times (\widehat{R} + \overrightarrow{\xi})$$. Thus if h and E are known and R is a point on the particles trajectory, its velocity at R can be calculated from (5). Let θ be the angle measured from $\widehat{\xi}$ in the positive direction (i.e., counterclockwise) to \widehat{R} . Hence in view of (2) and (3) $$h^2 = \vec{h} \cdot \vec{h} = \vec{h} \cdot \vec{R} \times \vec{V} = \vec{R} \cdot \vec{V} \times \vec{h} = \vec{R} \cdot \mu (\hat{R} + \vec{\epsilon})$$ $$\frac{h^2}{\mu} = R + R \in \cos \theta = R(1 + \epsilon \cos \theta)$$ (6) $$R = \frac{\frac{h^2}{\mu}}{1 + \epsilon \cos \theta}$$ But this is the general equation of a conic with eccentricity € and semi-latus rectum $$1 = \frac{h^2}{\mu} .$$ Thus we obtain the well known fact that the trajectory is a conic section. Since (6) implies that R is smallest when $\theta = 0$, the direction of $\widehat{\xi}$ is along the direction of perihelion. We now establish another important and well known relation. From (5) and (7) we write $$V^{2} = \overrightarrow{V} \cdot \overrightarrow{V} = \frac{1}{\mathcal{L}} \overrightarrow{V} \cdot \overrightarrow{h} \times (\overrightarrow{R} + \overrightarrow{\epsilon}) = \frac{1}{\mathcal{L}} (\overrightarrow{V} \cdot \overrightarrow{h} \times \overrightarrow{R} + \overrightarrow{V} \cdot \overrightarrow{h} \times \overrightarrow{\epsilon})$$ $$= \frac{1}{R\mathcal{L}} \left[\overrightarrow{h} \cdot \overrightarrow{R} \times \overrightarrow{V} + R(\overrightarrow{\epsilon} \cdot \overrightarrow{V} \times \overrightarrow{h}) \right]$$ Employing (2) and (3) this becomes $$\nabla^2 = \frac{1}{RZ} \left[h^2 + \vec{\epsilon} \cdot \mu(\vec{R} + R \vec{\epsilon}) \right]$$ $$= \frac{1}{RZ} \left[h^2 + \mu(R \vec{\epsilon} \cos \theta + R \vec{\epsilon}^2) \right]$$ With the aid of (6) we obtain $$\nabla^{2} = \frac{1}{R \ell} \left[h^{2} + \mu (\frac{h^{2}}{\mu} - R + R \ell^{2}) \right]$$ $$= \frac{1}{R \ell} \left[2 h^{2} + \mu R (\ell^{2} - 1) \right]$$ which becomes, after using (7) a second time, $$v^2 = \mu(\frac{2}{R} + \frac{\xi^2 - 1}{\ell})$$ Since $\mathcal{L} = a(1 - \xi^2)$ for ellipses and $\mathcal{L} = a(\xi^2 - 1)$ for hyperbolas where a is the semi-major axis of the conic we obtain (8) $$V^2 = \mu(\frac{2}{R} + \frac{1}{a})$$ where the negative or positive sign is chosen if the conic is an ellipse or hyperbola, respectively. Let π denote the plane of motion. Let S denote the area of π bounded by the arc R_1 R_2 and the vectors R_1 and R_2 . If C denotes this closed curve we obtain by Stokes' theorem $$\oint_C \vec{f} \cdot d\vec{R} = \iint_S \vec{n} \cdot (\nabla x \vec{f}) dS$$ setting $\vec{f} = \vec{\zeta} \times \vec{R}$ where ζ is any arbitrary constant vector (9) $\oint (\vec{\zeta} \times \vec{R}) \cdot d\vec{R} = \iint_{S} \hat{h} \cdot \nabla x (\vec{\zeta} \times \vec{R}) dS.$ Now $$(\vec{\zeta} \times \vec{R}) \cdot d\vec{R} = d\vec{R} \cdot (\vec{\zeta} \times \vec{R}) = \vec{\zeta} \cdot \vec{R} \times d\vec{R}$$ and $$\nabla x(\vec{\zeta}x\vec{R}) = \vec{R} \cdot \nabla \vec{\zeta} - \vec{\zeta} \cdot \nabla \vec{R} + \vec{\zeta} \nabla \cdot \vec{R} - \vec{R} \nabla \cdot \vec{\zeta}$$ but since ζ is a constant vector the dyadic $\nabla \overline{\zeta}$ and the scalar $\nabla \cdot \overline{\zeta}$ vanish. Since $R = x\hat{i} + y\hat{j} + z\hat{k}$ the dyadic ∇R is the idenfactor I $$\nabla \vec{R} = \frac{\partial \vec{R}}{\partial x} \hat{i} + \frac{\partial \vec{R}}{\partial y} \hat{j} + \frac{\partial \vec{R}}{\partial z} \hat{k} = \hat{i}\hat{i} + \hat{j}\hat{j} + \hat{k}\hat{k} = I$$ Consequently, since $\nabla \cdot \vec{R} = 3$ $$\nabla x(\vec{\zeta} \times \vec{R}) =
-\vec{\zeta} \cdot I + 3\vec{\zeta} = 2\vec{\zeta}$$ Thus since $\overline{\zeta}$ and \hat{h} are constant vectors (9) yields the expression $$\vec{\zeta} \cdot \oint \vec{R} \times d\vec{R} = 2 \vec{\zeta} \cdot \hat{h} \iint_{S} dS = 2 \vec{\zeta} \cdot \hat{h} S$$ The vector S is arbitrary hence we obtain $$\oint \vec{R} \times d\vec{R} = 2hS$$ By writing $d\vec{R} = \frac{d\vec{R}}{dt} dt = \vec{V}dt$ this expression can be written as $$\int_{T_1}^{T_2} \vec{R} \times \vec{V} dt = \int_{T_1}^{T_2} \vec{h} dt = \vec{h}(T_2 - T_1) = 2\hat{h}S$$ (10) $$\therefore$$ 2S = h(T₂ - T₁) This is equivalent to Kepler's second law. Setting $T_2 - T_1 = \Delta T$, (10) yields h $$\Delta T = 2S = 2 \int_{\frac{1}{2}}^{9} \rho^{2} d\theta$$ $$\rho = \frac{1}{1 + \epsilon \cos \theta}$$ $$\therefore \cos \theta = \frac{\ell}{\ell \epsilon} - \frac{1}{\epsilon}$$ $$\therefore -\sin \theta d\theta = -\frac{\ell}{\ell^{2} \epsilon} d\rho$$ $$d\theta = \frac{\ell}{\ell^{2} \epsilon \sin \theta} d\rho$$ Hence $$\Delta T = \frac{1}{h} \int_{R_1}^{R_2} \rho^2 \frac{1}{\rho^2 \in \sin \theta} d\rho$$ If $\vec{R}_1 = (a \in -a) \stackrel{\wedge}{\epsilon} = a (\in -1) \stackrel{\wedge}{\epsilon}$ and $\vec{R}_2 = \vec{\rho}_1$ (see figure on page 2), $\triangle T$ will be one-half of the total time $\triangle t$ a vehicle spends in \mathcal{T} . Thus $$\Delta t = \frac{2}{h} \int_{R_1 = a(\xi - 1)}^{R_2 = \rho^*} \frac{d\rho}{d\rho} = \frac{2l}{h\xi} \int_{a(\xi - 1)}^{\rho^*} \frac{d\rho}{\sqrt{1 - (\beta - 1)^2} \frac{1}{\xi^2}}$$ $$= \frac{2l}{h\xi} \int_{a(\xi - 1)}^{\rho^*} \frac{\xi \rho_d \rho}{\sqrt{\xi^2 \rho^2 - (l - \rho)^2}}$$ $$= \frac{2l}{h} \int_{a(\xi - 1)}^{\rho^*} \frac{\rho_d \rho}{\sqrt{(\xi^2 - 1) \rho^2 + 2l\rho - l^2}}$$ $$= \frac{2\ell}{h} \left\{ \frac{1}{(\epsilon^2 - 1)} \sqrt{(\epsilon^2 - 1)\rho^2 + 2\ell\rho - \ell^2} \right\} - \frac{\ell}{(\epsilon^2 - 1)\frac{3}{2}} \log |2.$$ $$\sqrt{(\epsilon^2 - 1)\rho^2 + 2\ell\rho - \ell^2} + 2(\epsilon^2 - 1)\rho + 2\ell | \frac{\ell^*}{a(\epsilon - 1)} \right\}$$ Since $\ell = a(\ell^2 - 1)$ $$\sqrt{(\xi^2-1)} a^2(\xi-1)^2 + 2 \ell a(\xi-1) - \ell^2 = a \sqrt{\xi^2-1} \cdot \sqrt{(\xi-1)^2 + 2(\xi-1) - (\xi^2-1)} = 0$$ Thus $$\Delta t = \frac{2a}{h} \left\{ \sqrt{\xi^2 - 1} \sqrt{\rho^{*2} + 2a\rho^* - a^2(\xi^2 - 1)} - a\sqrt{\xi^2 - 1} \left[\log \left| 2(\xi^2 - 1) \sqrt{\rho^{*2} + 2a\rho^* - a^2(\xi^2 - 1)} \right| + 2(\xi^2 - 1) \right| + 2a(\xi^2 - 1) \left| -\log \left| 2(\xi^2 - 1) a(\xi - 1) + 2a(\xi^2 - 1) \right| \right] \right\}$$ Substituting $\rho^* = (\frac{m}{M})^{\frac{2}{5}}c$ we obtain (11) $$\Delta t = 2\sqrt{\frac{a}{\mu}} \left\{ \sqrt{\left(\frac{m}{M}\right)^{\frac{4}{3}}} c^{2} + 2a\left(\frac{m}{M}\right)^{\frac{2}{5}} c - a^{2} (\epsilon^{2}-1) - a \log \frac{1}{\epsilon} \left[\sqrt{\left(\frac{m}{M}\right)^{\frac{4}{5}}} c^{2} + 2a\left(\frac{m}{M}\right)^{\frac{2}{5}} c - a^{2} (\epsilon^{2}-1) + \left(\frac{m}{M}\right)^{\frac{2}{5}} c + a \right] \right\}$$ We now introduce the notation which shall be used to find the trajectory which will take a free-fall vehicle from a certain launch planet P to the vacinity of a certain target planet Q such that its interaction with Q will send it on an interception trajectory with the launch planet P. - (a) \vec{c}_0 = position vector of the launch planet with respect to \sum when the vehicle begins its reconnaissance mission at time t_0 ; this vector will also be taken to be the initial position vector of the vehicle. - (b) \vec{r}_1 = position vector of vehicle when it enters the sphere of influence T of the target planet at time t_1 . - (c) $\overline{\ell_1}$ = position vector of vehicle when it enters T at time t_1 with respect to $\sum_{i=1}^{n}$. - (d) \$\overline{c}_1\$ = position vector of target planet at time \$t_1\$ when the vehicle enters its sphere of influence \$\overline{\capacture}\$. - (e) r_{cA} = position vector of target planet when the vehicle makes its closest approach to its surface at time t_{cA} . - (f) \vec{r}_2 = position vector of vehicle when it leaves \mathcal{T} at time t_2 . - (g) $\vec{\ell}_2$ = position vector of vehicle when it leaves \mathcal{T} with respect to $\sum_{i=1}^{n}$ at time t_2 . - (h) $\overline{c_2}$ = position vector of the target planet when the vehicle leaves its sphere of influence \mathcal{T} at time t_2 . - (i) $\overline{c_3}$ = position vector of launch planet at end of recomnaissance mission; this vector is also taken as the final position vector of the vehicle for the mission. - (j) \$\overline{h}_1\$, \$\overline{\epsilon}_1\$, \$\overline{a}_1\$, \$\overline{a}_1\$, \$\overline{a}_3\$, \$\overline{a}_3\$, \$\overline{a}_3\$, \$\overline{a}_3\$, \$\overline{a}_3\$, and the vector and scalar parameters corresponding to the departing elliptical trajectory and the returning elliptical trajectory, respectively. - (k) \vec{h}_2 , $\vec{\epsilon}_2$, a_2 , l_2 are the vector and scalar parameters when the trajectory is in \mathcal{T} with respect to Σ ' (by the manner in which Σ ' was chosen, these vectors given with respect to Σ ' have the same coordinate values with respect to Σ). - (1) P(t) and Q(t) denote the position vectors of the launch planet and target planet as functions of time. (These functions are obtain by ephemeris tables.) - (m) \overrightarrow{V}_1 and \overrightarrow{V}_2 denote the velocity vectors with respect to Σ as the vehicle enters and leaves \mathcal{T} , respectively; the velocity vectors of the vehicle as it enters and leaves \mathcal{T} with respect to Σ are \overrightarrow{V}_1 and \overrightarrow{V}_2 . - (n) d = distance of closest approach. - (o) R_O = radius of target planet. - (p) $r_i r_j = \text{arc of trajectory between } \vec{r}_i \text{ and } \vec{r}_j ; \vec{r}_i \vec{r}_j = \text{distance between } \vec{r}_i, \vec{r}_j.$ The problem of determining a round-trip, free-fall reconnaissance trajectory to one planet shall be formulated as follows: Assuming that the three basic assumptions hold, find a trajectory of a vehicle launched from the "center" of a given planet at the prescribed time t_c , which makes a closest approach to a given target planet at the prescribed time t_{cA} and returns to the "center" of the launch planet. Notice that after selecting the launch and target planets, only t_o and t_{cA} are prescribed. In theory this problem will always have a solution in Newtonian mechanics; however, if a solution gives a trajectory which comes closer to the center of the target planet than its own surface, it will be physically unrealizable and is said not to exist. For definiteness we shall assume that $T_o \leq t_{cA} - t_o \leq T(a_m)$ where T_o is the shortest flight time it takes a vehicle to pass from \overrightarrow{c}_o to \overrightarrow{c}_{cA} on an elliptical trajectory and $T(a_m)$ is the time taken when the vehicle has least energy (see Technical Memo #312-118). Instead of finding an exact solution to the problem (which, in lieu of the three basic assumptions, will not be a true solution) a solution shall be found which will be very close to an exact solution. This solution yielding the trajectory vectors \vec{h}_1 , $\vec{\ell}_1$, \vec{h}_2 , $\vec{\ell}_2$, \vec{h}_3 , $\vec{\ell}_3$ should suffice for a preliminary analysis (e.g. distance of closest approach), but for an actual mission where more accuracy may be desired an iteration method is given in the appendix that will enable one to obtain a solution which is arbitrarily close to the exact solution. It can be shown (see above mentioned reference) that if $T_0 \le T \le T(a_m)$ where T is the time required for a vehicle to pass from the point $\overline{R_1}$ to the point $\overline{R_2}$ under the gravitational influence of one stationary body (12) $$T = \sqrt{\frac{a^3}{\mu}} \left\{ \sqrt{1-x^2}_2 + \sin^{-1} x_2 - \sqrt{1-x^2}_1 - \sin^{-1} x_1 \right\}$$ where a is the semi-major axis of the elliptical path, $\mu = GM$ and x_1 , x_2 are given by $x_1 = 1 - \frac{S}{a}$ $x_2 = 1 - \frac{S - R_1 R_2}{a}$ $$S = \frac{1}{2}(R_1 + R_2 + \overline{R_1 R_2})$$ The eccentricity is then given by (13) $$\epsilon = \left\{1 - \frac{2}{R_1 R_2} 2 \left(S - R_1\right) \left(S - R_2\right) \left(1 - x_1 x_2 + \sqrt{1 - x_1^2} \cdot \sqrt{1 - x_2^2}\right)\right\}^{\frac{1}{2}}$$ If we now substitute $T=t_{CA}-t_{o}$, $\overline{R}_{1}=\overline{c}_{o}$ and $\overline{R}_{2}=\overline{c}_{CA}$ into (12) a_{1} can be calculated. Employing this in (13) the corresponding eccentricity ℓ_{1} can be calculated. Consequently, since $\ell_{1}=a_{1}(1-\xi_{1}^{2})$ the semi-latus rectum ℓ_{1} is obtained. These calculated values of a_{1}, ℓ_{1} and ℓ_{1} will clearly be very close to the exact values. Now by energy considerations a vehicle passing from \overline{c}_{o} to \overline{c}_{CA} on an elliptical trajectory will have an angular momentum \overline{h}_{1} given by (14) $$\vec{h}_1 = \pm \frac{\vec{c}_o \times \vec{c}_{CA}}{|\vec{c}_o \times \vec{c}_{CA}|} \sqrt{\mu_s \mathcal{I}_1}$$ where the positive or negative sign is chosen so that where h is the angular momentum of the launch planet about the sun. This can be easily seen by (2) with the aid of (7). Consider the problem of calculating the vector $\vec{\epsilon}$ corresponding to an elliptical path if ϵ and two points $\vec{R_1}$ and $\vec{R_2}$ on the path are known. The property which distinguishes a long-time elliptical path from a short-time path is that in the former case the chord joining $\vec{R_1}$ and $\vec{R_2}$ intersects the line segment \vec{F} joining the two foci \vec{F} and \vec{F} . For each of these cases we consider all the possible situations. Notice that (6) and (7) imply (15) $$\cos \theta = (\frac{\ell}{R} - 1) \frac{1}{\ell}$$ Thus writing $$\cos \theta_1 = (\frac{\ell}{R_1} - 1)
\frac{1}{\ell} \qquad \cos \theta_2 = (\frac{\ell}{R_2} - 1) \frac{1}{\ell}$$ we consider $$(1.1) \qquad \begin{array}{c} \cos \theta_1 \geq 0 \\ \cos \theta_1 \geq 0 \\ \end{array} \qquad \begin{array}{c} \cos \theta_2 \geq 0 \\ \cos \theta_2 \leq 0 \\ \end{array} \qquad \begin{array}{c} \operatorname{R}_1 > \operatorname{R}_2 \operatorname{R}_1 > \operatorname{R}_2 \\ \end{array} \qquad \begin{array}{c} \operatorname{R}_1 > \operatorname{R}_1 > \operatorname{R}_2 \\ \end{array} \qquad \begin{array}{c} \operatorname{R}_1 > \operatorname{R}_1 > \operatorname{R}_1 > \operatorname{R$$ $$(2.1) \qquad \begin{pmatrix} \cos \theta_1 \geq 0 & \cos \theta_2 \geq 0 \\ \cos \theta_1 \geq 0 & \cos \theta_2 \leq 0 \end{pmatrix}$$ $$(2.2) \qquad \begin{pmatrix} \cos \theta_1 \geq 0 & \cos \theta_2 \leq 0 \\ \cos \theta_1 \leq 0 & \cos \theta_2 \leq 0 \end{pmatrix}$$ $$(2.3) \qquad \begin{pmatrix} \cos \theta_1 \leq 0 & \cos \theta_2 \leq 0 \\ \cos \theta_1 \leq 0 & \cos \theta_2 \leq 0 \end{pmatrix}$$ Let up first take up the case of "short-time elliptical trajectories" and assume that (1.1) - (2.4) correspond to this case. For "long-time elliptical paths" the above eight situations again exhaust all the possibilities and, for convenience, we assume they are numbered (3.1) - (4.4), respectively. Thus it is clear that cases (1.2), (2.5), (5.1), (3.2), (4.1) and (4.3) are impossible. (In all cases we assume that the vehicle passes from $\overline{R_1}$ to $\overline{R_2}$ in counter-clockwise sense.) Now for case (1.1) we may have the following sub-cases: By elementary trigonometry it is easy to see that the first two cases yield $$\vec{\xi} = \frac{\sqrt{1 - \cos^2 \theta_1} \, \hat{R}_2 - \sqrt{1 - \cos^2 \theta_2} \, \hat{R}_1}{\left| \sqrt{1 - \cos^2 \theta_1} \, \hat{R}_2 - \sqrt{1 - \cos^2 \theta_2} \, \hat{R}_1 \right|} \in$$ For the last two sub-cases (iii) and (iv) (1.12) $$\vec{\xi} = \frac{\sqrt{R_1^2 + 2^2 - (\ell - R_1)^2} \vec{R}_2 + \sqrt{R_2^2 + 2^2 - (\ell - R_2)^2} \vec{R}_1}{\sqrt{R_1^2 + 2^2 - (\ell - R_1)^2} \vec{R}_2 + \sqrt{R_2^2 + 2^2 - (\ell - R_2)^2} \vec{R}_1}$$ In case (1.3) is true the following sub-cases are possible: Notice that in cases (iii) and (iv), \overline{R}_1 and \overline{R}_2 are on opposite sides of \overline{F} F* but $\overline{R_1R_2}$ does not intersect \overline{FF} . The sub-cases (i) and (ii) yield $$(1.31) \quad \stackrel{\leftarrow}{\epsilon} = \frac{\sqrt{R^2_1 \epsilon^2 - (\ell_{-R_1})^2} \ \overline{R}_2 - \sqrt{R^2_2 \epsilon^2 - (\ell_{-R_2})^2} \ \overline{R}_1}{\sqrt{R^2_1 \epsilon^2 - (\ell_{-R_1})^2} \ \overline{R}_2 - \sqrt{R^2_2 \epsilon^2 - (\ell_{-R_2})^2} \ \overline{R}_1} \ \epsilon$$ and the sub-cases (iii), (iv) yield $$(1.32) \quad \vec{\xi} = \frac{-\sqrt{R^{2}_{1} \xi^{2} - (\mathcal{L}_{-R_{1}})^{2} \vec{R}_{2}} - \sqrt{R^{2}_{2} \xi^{2} - (\mathcal{L}_{-R_{2}})^{2} \vec{R}_{1}}}{-\sqrt{R^{2}_{1} \xi^{2} - (\mathcal{L}_{-R_{1}})^{2} \vec{R}_{2}} - \sqrt{R^{2}_{2} \xi^{2} - (\mathcal{L}_{-R_{2}})^{2} \vec{R}_{1}}} \in$$ If the case (1.4) for the "short-time elliptical path" is true each of the following sub-cases may be true: The sub-cases (i) and (ii) yield the same formula for $$\vec{\ell}$$ given by (1.41) $\vec{\ell} = \frac{\sqrt{R_1^2 + \ell^2 - (\ell - R_1)^2} \vec{R}_2 - \sqrt{R_2^2 + \ell^2 - (\ell - R_2)^2} \vec{R}_1}{\sqrt{R_1^2 + \ell^2 - (\ell - R_1)^2} \vec{R}_2 - \sqrt{R_2^2 + \ell^2 - (\ell - R_2)^2} \vec{R}_1}$ and for (iii) and (iv) $$(1.42) \quad \vec{\xi} = \frac{-\sqrt{R_1^2 \xi^2 - (\ell - R_1)^2} \vec{R}_2 - \sqrt{R_2^2 \xi^2 - (\ell - R_2)^2} \vec{R}_1}{-\sqrt{R_1^2 \xi^2 - (\ell - R_1)^2} \vec{R}_2 - \sqrt{R_2^2 \xi^2 - (\ell - R_2)^2} \vec{R}_1} \quad \xi$$ When $R_1 < R_2$ for the cases (2.1) - (2.4), R_1 , θ_1 and R_2 , θ_2 in the cases (1.1-1.4) are simply reversed. Hence (2.11) $$\vec{\xi} = \frac{\sqrt{R_2^2 \xi^2 - (\ell - R_2)^2 \vec{R}_1} - \sqrt{R_1^2 \xi^2 - (\ell - R_1)^2 \vec{R}_2}}{\sqrt{R_2^2 \xi^2 - (\ell - R_2)^2 \vec{R}_1} - \sqrt{R_1^2 \xi^2 - (\ell - R_1)^2 \vec{R}_2}} \in$$ $$(2.12) \quad \stackrel{\leftarrow}{\xi} = \frac{\sqrt{R^2_2 \, \xi^2 - (\ell - R_2)^2 \, \overline{R}_1} + \sqrt{R^2_1 \, \xi^2 - (\ell - R_1)^2 \, \overline{R}_2}}{\sqrt{R^2_2 \, \xi^2 - (\ell - R_2)^2 \, \overline{R}_1} + \sqrt{R^2_1 \, \xi^2 - (\ell - R_1)^2 \, \overline{R}_2}} \quad \stackrel{\leftarrow}{\xi}$$ $$(2.21) \quad \vec{\xi} = \frac{\sqrt{R_{2}^{2} \xi^{2} - (\mathcal{L} - R_{2})^{2} \vec{R}_{1}} - \sqrt{R_{1}^{2} \xi^{2} - (\mathcal{L} - R_{1})^{2} \vec{R}_{2}}}{\sqrt{R_{2}^{2} \xi^{2} - (\mathcal{L} - R_{2})^{2} \vec{R}_{1}} - \sqrt{R_{1}^{2} \xi^{2} - (\mathcal{L} - R_{1})^{2} \vec{R}_{2}}} \in$$ $$(2.22) \quad \overrightarrow{\xi} = \frac{-\sqrt{R^{2}_{2} \xi^{2} - (\ell - R_{2})^{2} \vec{R}_{1}} - \sqrt{R^{2}_{1} \xi^{2} - (\ell - R_{1})^{2} \vec{R}_{2}}}{-\sqrt{R^{2}_{2} \xi^{2} - (\ell - R_{2})^{2} \vec{R}_{1}} - \sqrt{R^{2}_{1} \xi^{2} - (\ell - R_{1})^{2} \vec{R}_{2}}} | \xi |$$ (2.41) $$\vec{\xi} = \frac{\sqrt{R_2^2 \xi^2 - (\mathcal{L}_{-R_2})^2 \vec{R}_1} - \sqrt{R_1^2 \xi^2 - (\mathcal{L}_{-R_1})^2 \vec{R}_2}}{\sqrt{R_2^2 \xi^2 - (\mathcal{L}_{-R_2})^2 \vec{R}_1} - \sqrt{R_1^2 \xi^2 - (\mathcal{L}_{-R_1})^2 \vec{R}_2}} \in$$ $$(2.42) \quad \overline{\xi} = \frac{-\sqrt{R_{2}^{2} \xi^{2} - (\ell - R_{2})^{2}} \quad \overline{R}_{1} - \sqrt{R_{1}^{2} \xi^{2} - (\ell - R_{1})^{2}} \quad \overline{R}_{2}}{\left|-\sqrt{R_{2}^{2} \xi^{2} - (\ell - R_{2})^{2}} \quad \overline{R}_{1} - \sqrt{R_{1}^{2} \xi^{2} - (\ell - R_{1})^{2}} \right| \quad \overline{R}_{2}} \quad \epsilon$$ where (2.11) and (2.12) correspond to (i), (ii) and (iii), (iv) of case (1.1) with \overline{R}_1 and \overline{R}_2 reversed; (2.21) and (2.22) correspond to (i), (ii) and (iii), (iv) of case (1.3), respectively, with \overline{R}_1 and \overline{R}_2 reversed; (2.41) and (2.42) correspond to (i), (ii) and (iii), (iv), respectively, of case (1.4) with R_1 and R_2 reversed. In the case of "long-time elliptical paths" the chord joining R_1 and R_2 intersects the line segment \widetilde{FF} joining the two foci. Consequently, there are only two sub-cases to be considered for each of the cases (3.3), (3.4), (4.2) and (4.4). In the case of (3.3) Both of those sub-cases yield (3.31) $$\frac{1}{\xi} = \frac{-\sqrt{R_1^2 \xi^2 - (\ell - R_1)^2} \vec{R}_2 - \sqrt{R_2^2 \xi^2 - (\ell - R_2)^2} \vec{R}_1}{\left|-\sqrt{R_1^2 \xi^2 - (\ell - R_1)^2} \vec{R}_2 - \sqrt{R_2^2 \xi^2 - (\ell - R_2)^2} \vec{R}_1\right|} \in \mathbb{R}$$ For the case (3.4) and in both cases $$(3.41) \quad \vec{\epsilon} = \frac{-\sqrt{R_1^2 \epsilon^2 - (\ell - R_1)^2} \vec{R}_2 - \sqrt{R_2^2 \epsilon^2 - (\ell - R_2)^2} \vec{R}_1}{\left| -\sqrt{R_1^2 \epsilon^2 - (\ell - R_1)^2} \vec{R}_2 - \sqrt{R_2^2 \epsilon^2 - (\ell - R_2)^2} \vec{R}_1 \right|} \quad \epsilon$$ and is exactly the same as (3.31). For the cases (4.2) and (4.4) we simply interchange \overrightarrow{R}_1 and \overrightarrow{R}_2 yielding $$\frac{\vec{\epsilon}}{\vec{\epsilon}} = \frac{-\sqrt{R_2^2 \epsilon^2 - (\ell_- R_2)^2} \vec{R}_1 - \sqrt{R_1^2 \epsilon^2 - (\ell_- R_1)^2} \vec{R}_2}{\left| -\sqrt{R_2^2 \epsilon^2 - (\ell_- R_2)^2} \vec{R}_1 - \sqrt{R_1^2 \epsilon^2 - (\ell_- R_1)^2} \vec{R}_2} \right| \epsilon$$ which is the same as (3.41). Now for the case of "short-time elliptical paths" we find by observing the above figures that the sub-cases (i) and (ii) are more desirable than (iii) and (iv). Consequently, we write (16) $$\vec{\epsilon} = \frac{\sqrt{R_1^2 \epsilon^2 - (\ell - R_1)^2 \vec{R}_2} - \sqrt{R_2^2 \epsilon^2 - (\ell - R_2)^2 \vec{R}_1}}{\sqrt{R_1^2 \epsilon^2 - (\ell - R_1)^2 \vec{R}_2} - \sqrt{R_2^2 \epsilon^2 - (\ell - R_2)^2 \vec{R}_1}} \epsilon_{\text{if } R_1 > R_2}$$ (17) $$\vec{\epsilon} = \frac{\sqrt{R_2^2 \epsilon^2 - (\ell - R_2)^2 \vec{R}_1} - \sqrt{R_1^2 \epsilon^2 - (\ell - R_1)^2 \vec{R}_2}}{\sqrt{R_2^2 \epsilon^2 - (\ell - R_2)^2 \vec{R}_1} - \sqrt{R_1^2 \epsilon^2 - (\ell - R_1)^2 \vec{R}_2}} \epsilon_{\text{if } R_1 \epsilon R_2}$$ In the case of long-time elliptical paths is given by (18) $$\vec{\xi} = \frac{-\sqrt{R_2^2 \xi^2 - (\ell - R_2)^2} \vec{R}_1 - \sqrt{R_1^2 \xi^2 - (\ell - R_1)^2} \vec{R}_2}{-\sqrt{R_2^2 \xi^2 - (\ell - R_2)^2} \vec{R}_1 - \sqrt{R_1^2 \xi^2 - (\ell - R_1)^2} \vec{R}_2}$$ for both cases $R_1 > R_2$ and $R_1 < R_2$. If the formulas (16) and (17) do not yield desired solutions to the round-trip problem, one may try replacing (16) with: (1.12) if $\frac{L}{R_1} - 1$ and $\frac{L}{R_2} - 1$ are both positive; (1.32) if $\frac{L}{R_1} - 1 < 0$; and replace (17) with (2.12) if $\frac{L^2}{R_1} - 1 \ge 0$ and $\frac{L}{R_2} - 1 \ge 0$, (2.22) if $\frac{L^2}{R_2} - 1 < 0$. Roturning to the problem of finding a round-trip trajectory to one target planet we may now calculate the vector $\vec{\epsilon}_1$. Since the departing elliptical trajectory is assumed to be a short-time elliptical path, $\vec{\epsilon}_1$ is calculated by (16) or (17) if $c_0 > c_{CA}$ or $c_0 < c_{CA}$, respectively, by substituting $\vec{R}_1 = \vec{c}_0$, $\vec{R}_2 = \vec{c}_{CA}$, $\ell = \ell_1$, and $\ell = \ell_1$. Now as the vehicle passes the target planet it will interact with the target planet's gravitational field (i.e., with the target planet's motion) and, consequently, energy will be exchanged. Thus, in general, the total energy E_1 of the vehicle with respect to \sum before entering γ will be different from the total energy E_2 of the vehicle after leaving γ . Hence, since total energy = potential energy + kinetic energy we write by employing (8) $$E_1 = -\frac{\mu_B}{r_1} + \frac{1}{2} V_1^2 \approx -\frac{\mu_B}{c_{CA}} + \mu_B (\frac{1}{c_{CA}} - \frac{1}{2a_1})$$ $$E_2 = -\frac{\mu_8}{r_2} + \frac{1}{2} v_2^2 \approx -\frac{\mu_8}{c_{CA}} + \mu_8 (\frac{1}{c_{CA}} - \frac{1}{2a_3})$$ Hence, in general, $a_1 \neq a_3$. In some cases, if $T = t_{CA} - t_0$ is near T_0 , the
effect of the target planet may increase the vehicle's total energy such that it passes out of \mathcal{T} on a hyperbolic trajectory relative to the sun. This situation will not be considered since high initial energies would have to be imparted to the vehicle at the beginning of its journey. If, perhaps, this is desired one may still solve the problem by using different formulae, all of which appear in this paper. Thus we assume the vehicle returns to the launch planet on an elliptical path. This returning trajectory may be either a short-time or a long-time elliptical path. The vehicle may also make one or more circuits of the sun on its returning trajectory before intercepting its launch planet. The time T, which the vehicle requires to pass from \overline{R}_1 to \overline{R}_2 after first making k complete circuits of the sun, corresponding to these situations is given by (19) $$T = \sqrt{\frac{a^3}{\mu}} \left\{ \sqrt{1-x^2}_2 + \sin^{-1}x_2 - \sqrt{1-x^2}_1 - \sin^{-1}x_1 \right\} + kP$$ and (20) $$\widetilde{T} = \sqrt{\frac{a^3}{\mu}} \left\{ \pi + \sqrt{1-x^2} + \sin^{-1}x_2 + \sqrt{1-x^2} + \sin^{-1}x_1 \right\} + kP$$ respectively, where a is its semi-major axis, x_1 x_2 are as given in (12) and $P = 2\pi \sqrt{\frac{8}{\mu}}$ is the time the vehicle takes to complete one circuit of the sun. The eccentricity corresponding to (19) is given by (13) and corresponding to the case of long-time elliptical paths it is given by (21) $$\widetilde{\xi} = \left\{ 1 - \frac{2}{R_1 R_2} 2 \text{ (S-R_1) (S-R_2) (1-x_1 x_2)} - \sqrt{1-x_1^2} \sqrt{1-x_2^2} \right\}^{\frac{1}{2}}$$ It should be borne in mind that at this point we are free in theory to make the following statements: The vehicle returns on a short-time elliptical path with k = 0 or k = 1 or any arbitrary positive integer. The vehicle returns on a long-time elliptical path with k = 0 or k = 1 or any arbitrary positive integer. These statements are possible because of the unique way of stating the initial conditions. The determining factor will be the distance of closest approach corresponding to each of the above choices. In most cases short flight times will be desired hence we set k=0 and assume that the vehicle returns on a short-time elliptical path. Since \overline{r}_2 is very close to \overline{c}_{CA} we substitute $T=t_3-t_{CA}$, $a=a_3$, $\overline{R}_1=\overline{c}_{CA}$, $\overline{R}_2=\overline{c}_3=\overline{P}(t_3)$ and $\overline{R}_1\overline{R}_2=u(t_3)$ into (19) where $\overline{P}(t_3)$ and $u(t_3)$ are known vector and scalar functions of the variable t3. Consequently, we have an equation relating a3 and t3: $$(22) \quad t_{3}-t_{CA} = \sqrt{\frac{a_{3}^{3}}{\mu_{0}}} \left\{ \sqrt{1-\left[1-\frac{c_{CA}+P(t_{3})-u(t_{3})}{2a_{3}}\right]^{2}} + \sin^{-1}\left[1-\frac{c_{CA}+P(t_{3})-u(t_{3})}{2a_{3}}\right] - \sqrt{1-\left[1-\frac{c_{CA}+P(t_{3})+u(t_{3})}{2a_{3}}\right]^{2}} - \sin^{-1}\left[1-\frac{c_{CA}+P(t_{3})+u(t_{3})}{2a_{3}}\right] \right\}$$ Since recommissioned trajectory problems will employ large digital computers, the functional relation between a_3 and the variable t_3 , $a_3 = a_3(t_3)$ expressed by the above equation, shall be taken to represent a large table of numerical values of a_3 corresponding to a set of reasonable values of the variable t_3 . These values of a_3 corresponding to various values of t_3 can easily be calculated by the method given in the above reference. Henceforth, if f(x) and $\overline{f}(x)$ are any known scalar and vector functions of a variable x we shall think of f(x) and $\overline{f}(x)$ as tables of f(x) and f(x) are any known scalar and vector functions of a variable f(x) and f(x) and f(x) and f(x) as tables of f(x) and f(x) are any known scalar and vector functions f(x) and f(x) are any known scalar and vector functions of a variable f(x) and f(x) and f(x) and f(x) as tables of f(x) and f(x) are any known scalar and vector functions f(x) and f(x) are any known scalar and vector functions of a variable f(x) and f(x) and f(x) are any known scalar and vector functions of a variable f(x) are satisfied and stored in the computer. Consequently, substituting the tables $a=a_{3i}$, $\overline{R}_2=\overline{P}(t_{3i})$, $\overline{R_1R_2}=\overline{c_{CA}P(t_{3i})}$ into (13), $\epsilon_3(t_3)$ is obtained. We then calculate $\epsilon_3(t_3)$ by (16) or (17) depending on whether $c_{CA}>c_3$ or $c_{CA}< c_3$, respectively, and $\ell=\ell_3(t_3)=a_3(t_3)(1-\epsilon^2_3(t_3))$, $\overline{R}_1=\overline{c_{CA}}$, $\overline{R}_2=\overline{P}(t_3)$, $\epsilon=\epsilon_3(t_3)$ and calculate $\overline{h}_3(t_3)$ by (14) with $\ell=\ell_3(t_3)=a_3(t_3)(1-\epsilon^2_3(t_3))$ replacing $\ell=\ell=\ell=1$ replacing $\ell=\ell=1$ $\ell=1$ replac Now if the vehicle is in 7 $$(23) \qquad \overrightarrow{r} = \overrightarrow{c} + \overrightarrow{\rho}$$ where \bar{r} is the position vector of the vehicle and \bar{c} is the position vector of the target planet with respect to Σ . The vector $\bar{\rho}$ is the position vector of the vehicle with respect to Σ . If \bar{V}_Q denotes the velocity vector of the target planet with respect to Σ at time t_{CA} , then according to the second basic assumption, differentiating the above equation yields $$\overrightarrow{V} = \overrightarrow{V}_Q + \overrightarrow{V}$$ where \overline{V} and \overline{V}' are the velocity vectors of the vehicle with respect to \sum and \sum , respectively. Consequently, (24) yields $$\overrightarrow{v}_{1} = \overrightarrow{v}_{Q} + \overrightarrow{v}'_{1}$$ $$\overrightarrow{v}_{2} = \overrightarrow{v}_{Q} + \overrightarrow{v}'_{2}$$ $$\cdot \cdot \cdot \quad \overrightarrow{v}_{1}^{2} = \overrightarrow{v}_{1} \cdot \overrightarrow{v}_{1} = \overrightarrow{v}_{Q}^{2} + 2\overrightarrow{v}_{Q} \cdot \overrightarrow{v}'_{1} + \overrightarrow{v}_{1}^{'2}$$ $$\overrightarrow{v}_{2}^{2} = \overrightarrow{v}_{2} \cdot \overrightarrow{v}_{2} = \overrightarrow{v}_{Q}^{2} + 2\overrightarrow{v}_{Q} \cdot \overrightarrow{v}'_{2} + \overrightarrow{v}_{2}^{'2}$$ In view of (8) $$v_1^{'2} = \mu_Q(\frac{2}{\ell_1} + \frac{1}{a_2})$$ $v_2^{'2} = \mu_Q(\frac{2}{\ell_2} + \frac{1}{a_2})$ Hence since $P_1 = P_2$, $V_1^{'2} = V_2^{'2}$ Thus $$v_2^2 - v_1^2 = 2\overline{v}_Q \cdot (\overline{v}_2 - \overline{v}_1)$$ Now from (24) $\overline{v}_2 - \overline{v}_1 = \overline{v}_2 - \overline{v}_1$ (25) $$v^2 - v^2 = 2\vec{v}_0 \cdot (\vec{v}_2 - \vec{v}_1)$$ By (5) the vector \overrightarrow{V}_1 can be calculated by $$\overrightarrow{v}_1 = \frac{1}{\ell_1} \overrightarrow{h}_1 \times (\widehat{c}_{CA} + \overrightarrow{\epsilon}_1)$$ since \overrightarrow{r}_1 is very close to \overrightarrow{c}_{CA} . The table $\overrightarrow{V}_2(t_3)$ may also be calculated by $\overrightarrow{V}_2(t_3) = \frac{1}{\ell_3(t_3)} \overrightarrow{h}_3(t_3) \times (\overrightarrow{c}_{CA} + \overrightarrow{\epsilon}_3(t_3))$ Making use of (8) we write $$V_1^2 = \mu_s(\frac{2}{c_{CA}} - \frac{1}{a_1})$$ $V_2^2(t_3) = \mu_s(\frac{2}{c_{CA}} - \frac{1}{a_3(t_3)})$ Substituting the above results into (25) we obtain (26) $$\mu_{s}(\frac{1}{a_{1}} - \frac{1}{a_{3}(t_{3})}) = 2\vec{v}_{Q} \cdot \left[\frac{1}{\ell_{3}(t_{3})} \overrightarrow{h}_{3}(t_{3}) \times (\hat{c}_{CA} + \vec{\xi}_{3}(t_{3})) - \frac{1}{\ell_{1}} \overrightarrow{h}_{1} \times (\hat{c}_{CA} + \vec{\xi}_{1})\right].$$ The solution of this important equation is obtained by comparing the table $$2\vec{v}_{Q} \cdot (\vec{v}_{2}(t_{3}) - \vec{v}_{1})$$ with the table $$\mu_{\mathbf{s}}(\frac{1}{\mathbf{a}_{1}} - \frac{1}{\mathbf{a}_{3}(\mathbf{t}_{3})})$$ and finding that value of t₃ which gives the corresponding entries in the two tables identical (or nearly identical) values. After obtaining a solution t3 of (26) the quantities $$a_3 = a_3(t_3)$$ $\vec{\epsilon}_3 = \vec{\epsilon}_3(t_3)$ $\vec{\mathcal{L}}_3 = \vec{\mathcal{L}}_3(t_3)$ $\vec{h}_3 = \vec{h}_3(t_3)$ are calculated. Hence by (24) and (5) (27) $$\vec{v}_1' = \vec{v}_1 - \vec{v}_Q = \frac{1}{\mathcal{E}_1} \vec{h}_1 \times (\vec{c}_{CA} + \vec{\epsilon}_1) - \vec{v}_Q$$ (28) $$\vec{\nabla}_{1} = \vec{\nabla}_{2} - \vec{\nabla}_{Q} = \frac{1}{\mathcal{L}_{3}} \vec{h}_{3} \times (\vec{c}_{CA} + \vec{\epsilon}_{3}) - \vec{\nabla}_{Q}$$ and V_1^{12} , V_2^{12} are calculated. Since in theory $V_1^{1} = V_2^{1}$ we compute the average (29) $$\overline{v}^2 = \frac{1}{2} (v_1^2 + v_2^2)$$ and employ (8) to obtain (30) $$a_2 = \frac{\rho^* \, \mu_Q}{\overline{v}_1^2 \rho^* - 2 \, \mu_Q} \approx \frac{\mu_Q}{\overline{v}_1^2}$$ For hyperbolic conic sections the eccentricity & is given by $$\epsilon = \sqrt{1 + \left(\frac{b}{a}\right)^2}$$ where according to the figure on page 2 $$\tan \phi = \frac{b}{a}$$ Consequently by the third basic assumption $$\frac{\epsilon_2^2 = 1 + \tan^2 \phi}{\rho^*} = \sec^2 \phi$$ $$\frac{\epsilon_2^2 = 1 + \tan^2 \phi}{\rho^*} = \sec^2 \phi$$ $$\frac{1}{\epsilon_2}$$ Now from the figure we write $$... \cos^{2} \beta * = \frac{v_{1} \cdot v_{2} - \overline{v}_{1} \cdot \overline{v}_{2}}{2v_{1} v_{2}}$$ from which we obtain (31) $$\epsilon_2 = \sqrt{\frac{2\vec{v}_1 \cdot \vec{v}_2}{\vec{v}_1 \cdot \vec{v}_2 - \vec{v}_1 \cdot \vec{v}_2}}$$ After calculating a_2 and ϵ_2 by (30) and (31) the distance of closest approach d may be calculated by $$d = a_2 (\epsilon_2 - 1) - R_0$$ which is evident from the figure of the hyperbola. If the distance of closest approach turns out to be negative we conclude that the vehicle cannot return to the launch planet on a short-time elliptical path without first making at least one complete circuit of the sun. Consequently, returning to the choices given on page 20, we may let the vehicle make one circuit of the sum before it intercepts the launch planet thus changing k=0 to k=1 which will simply result in the addition of the term $$2x\sqrt{\frac{a_3^3}{\mu_s}}$$ to the right hand side
of (22) and repeat the calculations using the same formulas. On the other hand if we assume that the vehicle returns on a long-time elliptical path without making a complete circuit of the sun, then if the resulting distance of closest approach turns out to be positive a shorter flight time will be possible. Hence, we replace (22) by (32) $$t_{3} - t_{CA} = \sqrt{\frac{a_{3}^{3}}{\mu_{S}}} \left\{ * + \sqrt{1 - \left[1 - \frac{c_{CA} + P(t_{3}) + u(t_{3})}{2a_{3}}\right]^{2} + \sin^{-1}\left[1 - \frac{c_{CA} + P(t_{3}) - u(t_{3})}{2a_{3}}\right]} + \sqrt{1 - \left[1 - \frac{c_{CA} + P(t_{3}) + u(t_{3})}{2a_{3}}\right]^{2} + \sin^{-1}\left[1 - \frac{c_{CA} + P(t_{3}) + u(t_{3})}{2a_{3}}\right]} \right\}$$ The machine shall then proceed by calculating a new table $a_3 = a_3(t_3)$ corresponding to the set $\{t_{3i}\}$ of expected values of t_3 by solving for a_3 in (32) for each t_{3i} of $\{t_{3i}\}$. Substituting this table (i.e., each entry of the table corresponding to each t_{3i}) into (21) we obtain the table $\mathcal{E}_3(t_3)$. The table of vectors $\vec{\mathcal{E}}_3(t_3)$ is calculated by (18) with $\mathcal{L} = \mathcal{L}_3(t_3) = a_3(t_3)(1-\mathcal{E}_3^2(t_3))$, $\vec{R}_1 = \vec{c}_{CA}$, $\vec{R}_2 = \vec{P}(t_3)$ and $\vec{\mathcal{E}} = \mathcal{E}_3(t_3)$. After obtaining the table $\vec{\mathcal{E}}_3(t_3)$ the above steps are repeated using the same formulas. If the resulting value of d remains negative and the initial conditions t_0 , t_{CA} remain unchanged the vehicle must make at least one circuit of the sun before it can return to the launch planet after leaving the vicinity of the target planet. Consequently one is forced to change the initial values of t_0 , t_{CA} and perhaps consider long-time departing trajectories. Suppose one of the above calculations of d yields a reasonable value for the distance of closest approach. Then since $\mathcal{L}_2 = a_2(\varepsilon_2^2 - 1)$, an application of (7) yields (33) $$h_2 = \sqrt{a_2(\xi_2^2 - 1) \mu_Q}$$ Since $\overline{\xi}_2$ is along the direction of perihelion with respect to Σ and since $V_1^i = V_2^i$ the vector $\overline{\xi}_2$ may easily be calculated by the formula $$(34) \qquad \qquad \dot{\overline{\xi}}_2 = \frac{\dot{\overline{v}}_1' - \overline{\overline{v}}_2'}{\left|\overline{\overline{v}}_1' - \overline{\overline{v}}_2'\right|} \quad \epsilon_2$$ where \vec{V}_1 and \vec{V}_2 are given by (27) and (28). Also since \vec{h}_2 is perpendicular to the plane of motion in γ' and passes from $\vec{\rho}_1$ to $\vec{\rho}_2$ with respect to $\vec{\Sigma}'$ the vector \vec{h}_2 may be obtained by the formula $$\hat{h}_2 = \frac{\hat{\overline{v}}_1' \times \hat{\overline{v}}_2'}{|\hat{\overline{v}}_1' \times \hat{\overline{v}}_2'|} \quad h_2$$ Employing (3) we obtain (36) $$\overrightarrow{P}_{1} = (\frac{1}{\mu_{Q}} \overrightarrow{\nabla}_{1} \times \overrightarrow{h}_{2} - \overrightarrow{\epsilon}_{2})(\frac{m}{M})^{\frac{2}{5}} c_{1}$$ $$\overrightarrow{P}_{2} = (\frac{1}{\mu_{Q}} \overrightarrow{\nabla}_{2} \times \overrightarrow{h}_{2} - \overrightarrow{\epsilon}_{2})(\frac{m}{M})^{\frac{2}{5}} c_{2}$$ $$(c_{1} \approx c_{2} \approx c_{CA})$$ The amount of time Δt the vehicle spends in γ' can be calculated by (11) substituting $a=a_2$, $\ell=\ell_2$, $\mu=\mu_{Q}$ with M and m equal to the mass of the sun and target planet respectively consequently (38) $$t_1 = t_{CA} - \frac{1}{2} \Delta t$$ $t_2 = t_{CA} + \frac{1}{2} \Delta t$ from which c_1 and c_2 can be obtained $$\vec{c}_1 = \vec{Q}(t_1) \qquad \vec{c}_2 = \vec{Q}(t_2)$$ Thus by (23) (39) $$\vec{r}_1 = \vec{c}_1 + \vec{\rho}_1$$ $\vec{r}_2 = \vec{c}_2 + \vec{\rho}_2$ The solution will be complete when the position vector and corresponding velocity vector of the vehicle are found as functions of time. Since this will involve a great amount of computation the quantities $\overline{\epsilon}_1$, \overline{h}_1 , $\overline{\epsilon}_2$, \overline{h}_2 , $\overline{\epsilon}_3$, \overline{h}_3 and \overline{r}_1 , \overline{r}_2 , $\overline{\rho}_1$, $\overline{\rho}_2$, should be refined. This can be easily accomplished by a method of successive approximations given in the appendix. We now develop some important general formulas from which the complete solution may be calculated. Consider any elliptical trajectory which takes a vehicle from \vec{R}_1 to \vec{R}_2 such that $4\vec{R}_1\vec{R}_2 < 180^\circ$. Thus from this figure it is clear that the vectors (40) $$\hat{\sigma}_{n} = \frac{\vec{R}_{1} + \frac{n}{N} (\vec{R}_{2} - \vec{R}_{1})}{\left| \vec{R}_{1} + \frac{n}{N} (\vec{R}_{2} - \vec{R}_{1}) \right|} \qquad (n = 0, 1, ... N)$$ represent a set $\{\hat{\sigma}_n\}$ of unit position vectors of the vehicle as it passes from \widehat{R}_1 to \widehat{R}_2 . Notice that if n=0, $\widehat{\sigma}_0=\widehat{R}_1$ and n=N yields $\widehat{\sigma}_N=\widehat{R}_2$. If $A = \widehat{R}_1 = 180^\circ$ the set $\{\widehat{\sigma}_n\}$ $(n=0,1,2,\ldots,N)$ is obtained by constructing three subsets $\{\sigma_n\}$ $(n=0,1,\ldots,N_1-1)$, $\{\sigma_n\}$ $(n=N_1,N_1+1,\ldots,N_1+N_2-1)$ and $\{\sigma_n\}$ $(n=N_1+N_2,N_1+N_2+1,\ldots,N_1+N_2+N_3=N)$. (41.1) $$\hat{\sigma}_{n} = \frac{|\vec{R}_{1} + \frac{n}{N!}(-\vec{R}_{2} - \vec{R}_{1})|}{|\vec{R}_{1} + \frac{n}{N!}(-\vec{R}_{2} - \vec{R}_{1})|} \qquad (n = 0, 1, ..., N' - 1)$$ (41.2) $$\hat{\sigma}_{n} = \frac{-\hat{E}_{2} + \frac{n-N'}{N''} (\hat{E}_{2} - \hat{E}_{1})}{\left|-\hat{E}_{2} + \frac{n-N'}{N''} (\hat{E}_{2} - \hat{E}_{1})\right|} \qquad (n = N', N' + 1, ...N' + N''-1)$$ (41.3) $$\hat{\sigma}_{n} = \frac{-\hat{R}_{1} + \frac{n-N'-N''}{N'''} (\hat{R}_{1} + \hat{R}_{2})}{\left|-\hat{R}_{1} + \frac{n-N'-N''}{N'''} (\hat{R}_{1} + \hat{R}_{2})\right|} \qquad (n=N'+N'', N'+N'''+N''+1,...$$ Notice that $\hat{\sigma}_0 = \hat{R}_1$, $\hat{\sigma}_{N^1} = -\hat{R}_2$, $\hat{\sigma}_{N^1+N^m} = -\hat{R}_1$ and $\hat{\sigma}_{N^1+N^m+N^m} = \hat{\sigma}_N = \hat{R}_2$. Thus this set $\left\{\hat{\sigma}_n\right\}$ $(n = 0, 1, \dots, N)$ also represents a set of unit position vectors of the vehicle as it passes from \hat{R}_1 to \hat{R}_2 such that $\oint \hat{R}_1 \hat{R}_2 > 180^\circ$. Employing (5) the set $\left\{\hat{\nabla}_n\right\}$ of velocity vectors corresponding to the vehicles set $\left\{\hat{\sigma}_n\right\}$ of unit position vectors can be calculated (42) $$\overline{V}_{n} = \frac{1}{f} \hat{h} \times (\hat{\sigma}_{n} + \vec{\epsilon})$$ $(n = 0,1, ..., N)$ From (6) the magnitude of the vehicles position vectors can be calculated. Thus (43) $$\dot{\overline{\sigma}}_{n} = \sigma_{n}^{\hat{\sigma}}_{n} = \frac{\mathcal{L}}{1 + \hat{\sigma}_{n} \cdot \hat{\epsilon}} \quad \dot{\overline{\sigma}}_{n} .$$ The set $\{t_n\}$ corresponding to the time when the vehicle is at σ_n can be easily calculated by (19) for short-time trajectories or (20) for long-time elliptical paths by setting k=0 and $$x_1 = x_{n1} = 1 - \frac{S}{a} = 1 - \frac{R_1 + \sigma_n + \overline{\sigma_n R_1}}{2a}$$ JET PROPULSION LABORATORY TECHNICAL MEMORANDUM 312-130 $$x_{n1} = 1 - \frac{R_1 + \sigma_n + \sqrt{R_1^2 + \sigma_n^2 - 2R_1 \cdot \sigma_n^2}}{2a}$$ $$x_2 = x_{n2} = 1 - \frac{S - \overline{R_1}\sigma_n}{a} = 1 - \frac{R_1 + \sigma_n - \overline{\sigma_n}R_1}{2a}$$ $$x_{n2} = 1 - \frac{R_1 + \sigma_n - \sqrt{R_1^2 + \sigma_n^2 - 2R_1 \cdot \sigma_n^2}}{2a}$$ and $T = t_n - t_o$ where t_o is the known time when the vehicle is at $\vec{\sigma}_0 = \vec{R}_0$ $$\sigma_{0} = R_{1}$$ $$(44) \qquad \therefore t_{n} = t_{0} + \sqrt{\frac{a^{3}}{\mu}} \left\{ \sqrt{1-x_{n2}^{2}} + \sin^{-1}x_{n2} - \sqrt{1-x_{n1}^{2}} - \sin^{-1}x_{n1} \right\}$$ or $$t_{n} = t_{o} + \sqrt{\frac{a^{3}}{\mu}} \left\{ x + \sqrt{1 - x_{n2}^{2}} + \sin^{-1}x_{n2} + \sqrt{1 - x_{n1}^{2}} + \sin^{-1}x_{n1} \right\}$$ Consider the determination of $\left\{ \hat{\sigma}_{n} \right\}$ for hyperbolic trajectories. Thus by the above figure we obtain the formulas (46.1) $$\hat{\sigma}_{n} = \frac{\vec{R}_{1} + \frac{n}{N'}(\vec{c} - \vec{R}_{1})}{|\vec{R}_{1} + \frac{n}{N'}(\vec{c} - \vec{R}_{1})|} \qquad (n = 0, 1, ..., N' -1)$$ (46.2) $$\hat{\sigma}_{n} = \frac{\vec{\epsilon} + \frac{n-N'}{N'} (\vec{R}_{2} - \vec{\epsilon})}{|\vec{\epsilon} + \frac{n-N'}{N'} (\vec{R}_{2} - \vec{\epsilon})|} \qquad (n = N', N' + 1, ..., 2N' = N)$$ The corresponding set of velocity vectors $\{\vec{v}_n\}$ can be calculated from (42) noting that in this case $\mathcal{L} = \mathbf{a}(\mathbf{c}^2 - \mathbf{l})$. The magnitude of the position vectors can be also obtained from (6) and hence by (43) the set $\{\vec{\sigma}_n\}$ can be calculated. The time the vehicle takes to pass from \vec{k}_1 to \vec{k}_2 on hyperbolic trajectories can be expressed as corresponding to short-time and long-time hyperbolic path respectively (see technical memo 312-118). If this flight time is known the type of hyperbolic path can be determined by substituting into (47) and (48) the values of y_1 and y_2 corresponding to \overline{R}_1 and \overline{R}_2 and observing which formula yields the correct flight time. With the aid of these formulas the solution can be readily calculated. Let us now denote the times when the vehicle enters and leaves the sphere of influence of the target planet by t_{N_1} and t_{N_2} respectively. Let the time when the vehicle completes its journey be denoted by $t_{N_{\overline{3}}}$ instead of t_{3} . Since we assume in the figures drawn for elliptic trajectories that the vehicle passes from \vec{R}_1 to \vec{R}_2 in a counter clockwise direction the angular momentum vector \vec{h} always points up out of the paper. Thus the angle $\vec{A} \vec{c}_0$ $\vec{R}_1 \le 180^\circ$ if and only if (49) $$\frac{\vec{c}_0 \times \vec{r}_1}{|\vec{c}_0 \times \vec{r}_1|} - \hat{h}_1 = 0$$ Consequently the first set of position and velocity
vectors $\left(\overrightarrow{\sigma}_{n}\right)$, $\left(\overrightarrow{V}_{n}\right)$ at times t_{n} of the vehicle on its departing elliptical trajectory can be easily calculated by (40) or (41.1, 41.2, 41.3) depending on whether (49) is or is not satisfied respectively; employing the results in (42) and (43) to obtain $\left(\overrightarrow{V}_{n}\right)$ and $\left(\overrightarrow{\sigma}_{n}\right)$ and substituting $\left(\overrightarrow{\sigma}_{n}\right)$ into (44) (since for definiteness we have assumed a short-time elliptical deporting trajection) we obtain the corresponding set of times $\left(t_{n}\right)$. Thus if $$\frac{\vec{c}_{o} \times \vec{r}_{1}}{|\vec{c}_{o} \times \vec{r}_{1}|} \approx h_{1}$$ $$\hat{\sigma}_{n} = \frac{\vec{c}_{o} + \frac{n}{N_{1}}(\vec{r}_{1} - \vec{c}_{o})}{|\vec{c}_{o} + \frac{n}{N_{1}}(\vec{r}_{1} - \vec{c}_{o})|} \qquad (n = 0, 1, ...N_{1})$$ if $$\frac{\vec{c}_0 \times \vec{r}_1}{|\vec{c}_0 \times \vec{r}_1|} \not\models \hat{h}_1$$ $$\widehat{\sigma}_{n} = \frac{\overrightarrow{c}_{o} - \frac{n}{N_{1}^{i}}(\overrightarrow{r}_{1} + \overrightarrow{c}_{o})}{\left|\overrightarrow{c}_{o} - \frac{n}{N_{1}^{i}}(\overrightarrow{r}_{1} + \overrightarrow{c}_{o})\right|} \qquad (n = 0, 1, ... N_{1}^{i} - 1)$$ $$\hat{\sigma}_{n} = \frac{-\vec{r}_{1} + \frac{n - N_{1}^{i}}{N_{1}^{n}} (\vec{r}_{1} - \vec{c}_{0})}{\left| -\vec{r}_{1} + \frac{n - N_{1}^{i}}{N_{1}^{n}} (\vec{r}_{1} - \vec{c}_{0}) \right|} \quad (n = N_{1}^{i}, N_{1}^{i} + 1, \dots N_{1}^{i} + N_{1}^{n} - 1)$$ $$\hat{\sigma}_{n} = \frac{-\hat{c}_{o} + \frac{n - N_{1}^{i} - N_{1}^{n}}{N_{1}^{n_{1}}} (\hat{c}_{o} + \hat{r}_{1})}{|\hat{c}_{o} + \frac{n - N_{1}^{i} - N_{1}^{n}}{N_{1}^{i+1}} (\hat{c}_{o} + \hat{r}_{1})|} (n = N_{1}^{i} + N_{1}^{n}, N_{1}^{i} + N_{1}^{n} + 1, \dots, N_{1}^{i} + N_{1}^{n} + N^{i+1} = N_{1})$$ where N_1 is the total number of observations one wishes to carry out while the vehicle is on its departing trajectory. Referring to the figure on Page 27a the numbers N_1' , N_1'' and N_1'' are the number of observations one wishes to perform when the vehicle is on the arcs \widehat{A} B, \widehat{B} C and \widehat{C} D respectively such that $N_1' + N_1'' + N_1'' = N_1$. After calculating this set the results are substituted into (42) to obtain a corresponding set $\{\overline{V}_n\}$ $(n=0,1,\ldots N_1)$ of velocity vectors. $$\overline{V}_n = \frac{1}{\ell_1} \overline{h}_1 \times (\widehat{\sigma}_n + \overline{\epsilon}_1)$$ $(n = 0,1, ..., N_1)$ The set of position vectors $\{\vec{\sigma}_n\}$ is calculated by $$\dot{\overline{\sigma}}_{n} = \frac{\ell_{1}}{1 + \hat{\sigma}_{n} \cdot \dot{\overline{\epsilon}}_{1}} \hat{\sigma}_{n} \qquad (n = 0, 1, \dots N_{1})$$ The corresponding set $\left\{t_{n}\right\}$ is calculated by $t_{n} = t_{0} + \sqrt{\frac{a_{1}^{5}}{\mu_{S}}} \left\{1 - x_{n2}^{2} + \sin^{-1}x_{n2} - \sqrt{1 - x_{n1}^{2}} - \sin^{-1}x_{n1}\right\}$ where ($$x_{n1} = 1 - \frac{c_{0} + \sigma_{n} + \sqrt{c_{0}^{2} + \sigma_{n}^{2} - 2c_{0} \cdot \sigma_{n}^{2}}}{2a_{1}}$$ $$x_{n2} = 1 - \frac{c_{0} + \sigma_{n} - \sqrt{c_{0}^{2} + \sigma_{n}^{2} - 2c_{0} \cdot \sigma_{n}^{2}}}{2a_{1}}$$ $$(n = 0, 1, ..., N_{1})$$ When the vehicle enters the sphere of influence of the target planet its position and velocity vectors $\{\overrightarrow{P}_n\}$, $\{\overrightarrow{v}_n'\}$ along with $\{t_n\}$ can be obtained by first calculating $\{\widehat{P}_n\}$ by (46.1) and (46.2). Changing the notation of \overrightarrow{P}_1 and \overrightarrow{P}_2 to \overrightarrow{P}_N and \overrightarrow{P}_N respectively $$\hat{\rho}_{n} = \frac{\overrightarrow{P}_{N_{1}} + \frac{n-N_{1}}{N_{2}^{'}} (\overrightarrow{\epsilon}_{2} - \overrightarrow{P}_{N_{1}})}{|\overrightarrow{P}_{N_{1}} + \frac{n-N_{1}}{N_{1}^{'}} (\overrightarrow{\epsilon}_{2} - \overrightarrow{P}_{N_{1}})|} \qquad (n = N_{1}, N_{1} + 1, \dots, N_{1} + N_{2}^{'} - 1)$$ $$\hat{\rho}_{n} = \frac{\vec{\epsilon}_{2} + \frac{n-N_{1}-N_{2}^{i}}{N_{2}^{i}} (\vec{\rho}_{N_{2}} - \vec{\epsilon}_{2})}{|\vec{\epsilon}_{2} + \frac{n-N_{1}-N_{2}^{i}}{N_{2}^{i}} (\vec{\rho}_{N_{2}} - \vec{\epsilon}_{2})|}$$ $$(n=N_{1}+N_{2}^{i}, N_{1}+N_{2}^{i}+1, ..., N_{1}+2N_{2}^{i} = N_{2}^{i})$$ where 2N' is the total number of observations one wishes to perform when the vehicle is in the vicinity of the target planet (i.e., in its sphere of influence). The corresponding set $\left\{\begin{array}{c} \overleftarrow{V_i} \\ n \end{array}\right\}$ of the vehicles velocity vectors with respect to \(\sum ' is calculated by $$\vec{\nabla}_{n}^{i} = \frac{1}{\ell_{2}} \vec{h}_{2} \times (\hat{\rho}_{n} + \vec{\epsilon}_{2})$$ $(n = N_{1}, N_{1} + 1, ..., N_{2})$ The position vectors $$\{\widehat{P}_n\}$$ are calculated by $$\widehat{\overline{P}}_n = \frac{\ell_2}{1+\widehat{P}_n \cdot \widehat{\overline{\xi}}_2} \quad \widehat{P}_n \quad (n = N_1, N_1 + 1, ..., N_2)$$ By substituting \overrightarrow{P}_{N_1} and \overrightarrow{P}_{N_2} for \overrightarrow{R}_1 and \overrightarrow{R}_2 in (47) and (48) and comparing the results with $t_{N_2} - t_{N_1} = \Delta t$ one can determine whether the hyperbolic path in $\mathcal T$ with respect to \sum is of the short-time or long-time type. Consequently, time type. Consequently $$t_n = t_{N_1} + \sqrt{\frac{a_2^3}{\mu_Q}} \left\{ \sqrt{y_{nl}^2 - 1} - \cosh^{-1} y_{nl} - \sqrt{y_{n2}^2 - 1} + \cosh^{-1} y_{n2} \right\}$$ or $$t_{n} = t_{N_{1}} + \sqrt{\frac{a_{2}^{3}}{\mu_{Q}}} \left\{ \sqrt{y_{n1}^{2} - 1} - \cosh^{-1} y_{n1} + \sqrt{y_{n2}^{2} - 1} - \cosh^{-1} y_{n2} \right\}$$ for short and long time types respectively and where $$y_{nl} = 1 + \frac{\rho_{N_1} + \rho_n + \rho_n^2 + \rho_n^2 - 2\overline{\rho}_{N_1} \cdot \overline{\rho}_n}{2a_2}$$ $$y_{n2} = 1 + \frac{\rho_{N_1} + \rho_n - \sqrt{\rho_{N_1}^2 + \rho_{n-2}^2 \rho_{N_1}^2 \rho_n^2}}{2a_2}$$ and $n = N_1$, $N_1 + 1$, ..., N_2 . This set may also be obtained by employing (11) which holds for both short and long time cases. $$t_{n} = \frac{1}{2} (t_{N_{1}} + t_{N_{2}}) - \sqrt{\frac{a_{2}}{\mu_{Q}}} \left\{ \sqrt{\rho_{n}^{2} + 2a_{2}\rho_{n} - a_{2}^{2}(\epsilon_{2}^{2} - 1)} - a_{2} \log \frac{1}{\epsilon_{2} a_{2}} \left(\sqrt{\rho_{n}^{2} + 2a_{2}\rho_{n} - a_{2}^{2}(\epsilon_{2}^{2} - 1)} + \rho_{n} + a_{2}) \right) \right\}$$ for $n = N_1$, $N_1 + 1$, ..., $N_1 + N_1'$ such that $t_{N_1} + N_2' = t_{N_1} + \frac{1}{2}\Delta t = \frac{1}{2}(t_{N_1} + t_{N_2})$. $$t_n = t_{N_1} + N_2' + j = t_{N_1} + t_{N_2} - t_{N_1} + N_2' - j$$ (j = 1,2,...N') so that n in this formula ranges from $n = N_1 + N_2^* + 1$ to $n = N_1 + N_2^* + N_2^* = N_2$. The values of $t_{N_1} + N_2^* - j$ are first computed from the previous formula. One may use both methods for the computation of $\{t_n\}$ $(n = N_1, N_1 + 1, \ldots, N_2)$ to check one against the other. With respect to \sum $$\overrightarrow{\sigma}_{n} = \overrightarrow{Q}(t_{n}) + \overrightarrow{\rho}_{n}$$ $$\overrightarrow{\nabla}_{n} = \overrightarrow{\nabla}_{Q} + \overrightarrow{\nabla}'_{n}$$ $$(n = N_{1}, N_{1} + 1, ..., N_{2})$$ where \vec{v}_Q is taken as the velocity of the target planet when the vehicle makes its closest approach at time $t_{CA} = t_{N_1} + N_2^*$. The solution corresponding to the returning elliptical trajectory proceeds by calculating $$\hat{\sigma}_{n} = \frac{\vec{r}_{2} + \frac{n - N_{2}}{N'_{3}} (\vec{c}_{3} - \vec{r}_{2})}{\vec{r}_{2} + \frac{n - N_{2}}{N'_{3}} (\vec{c}_{3} - \vec{r}_{2})}$$ $$(n = N_{2}, N_{2} + 1, \cdots N_{2} + N'_{3} = N_{3})$$ $$\frac{\vec{r}_2 \times \vec{c}_3}{|\vec{r}_2 \times \vec{c}_3|} \approx \hat{h}_3$$ where N'₃ is the total number of observations made of the vehicle on its returning ellipse If $\frac{\vec{r}_2 \times \vec{c}_3}{|\vec{r}_2 \times \vec{c}_3|} \approx -\hat{h}_3$ these vectors are calculated by $\frac{n - N_2}{r_2} + \frac{n - N_2}{N_1} (-\vec{c}_3 - \vec{r}_2)$ $$\hat{\sigma}_{n} = \frac{\vec{r}_{2} + \frac{n - N_{2} (-\vec{c}_{3} - \vec{r}_{2})}{N'_{3}}}{\left| \vec{r}_{2} + \frac{n - N_{2} (-\vec{c}_{3} - \vec{r}_{2})}{N'_{3}} (-\vec{c}_{3} - \vec{r}_{2}) \right|}$$ $$(n = N_{2}, N_{2} + 1, \dots, N_{2} + N'_{3} - 1)$$ $$\hat{\sigma}_{n} = \frac{-c_{3} + \frac{n - N_{2} - N'_{3}}{N''_{3}} (\vec{c}_{3} - \vec{r}_{2})}{\left| -\vec{c}_{3} + \frac{n - N_{2} - N'_{3}}{N''_{3}} (\vec{c}_{3} - \vec{r}_{2}) \right|} (n = N_{2} + N'_{3}, N_{2} + N'_{3} + 1, \cdots, N_{2} + N'_{3} + N''_{3} - 1)$$ $$\hat{\sigma}_{n} = \frac{-\vec{r}_{2} + n - N_{2} - N^{1}_{3} - N^{1}_{3}}{N_{3}^{1}} (\vec{r}_{2} + \vec{c}_{3})$$ $$(n = N_{2} + N_{3} + N_{3}^{1}, N_{2} + N_{3}^{1} + N_{3}^{1} + 1, \cdots)$$ $$| -\vec{r}_{2} + n - N_{2} - N^{1}_{3} - N_{3}^{1}}{N_{3}^{1}} (\vec{r}_{2} + \vec{c}_{3}) | N_{2} + N_{3}^{1} + N_{3}^{1} + N_{3}^{1})$$ where N₂ + N₃ + N₃'' = N₃ and by observing the figure on page 27a, N₃ is the number of observations made when the vehicle is on AB N₃' is the number of observations made when the vehicle is on BC and N₃'' is the number of observations made when the vehicle is on CD. The total number of observations performed on the vehicle on its returning trajectory is N₃ + N₃'' + N₃''. The corresponding velocity vectors are calculated by $$\vec{v}_n = \frac{1}{Z_3} \vec{h}_3 \times (\hat{\sigma}_n + \vec{\epsilon}_3)$$ $(n = N_2, N_2 + 1, \dots, N_3)$ The position vectors are obtained by $$\vec{\sigma}_{n} = \frac{\mathcal{L}_{3}}{1 + \hat{\sigma}_{n} \cdot \vec{\epsilon}_{3}} \quad \hat{\sigma}_{n} \qquad (n = N_{2}, N_{2} + 1, \cdots N_{3})$$ The time t_n when the vehicle is at $\vec{\sigma}_n$ with velocity \vec{v}_n can be calculated by $$t_n = t_{N_3} - \sqrt{\frac{a_3^3}{\mu_s}} \left\{ \sqrt{1 - x_{n2}^2} + \sin^{-1} x_{n2} - \sqrt{1 - x_{n1}^2} - \sin^{-1} x_{n1} \right\}$$ or $t_n = t_{N_3} - \sqrt{\frac{a_3^3}{\mu_s}} \left\{ \pi + \sqrt{1 - x_{n2}^2} + \sin^{-1} x_{n2} + \sqrt{1 - x_{n1}^2} + \sin^{-1} x_{n1} \right\}$ depending on whether the vehicle
returns on a short or long time elliptical trajectory respectively where $$x_{1n} = 1 - \frac{c_3 + \sigma_n + \sqrt{c_3^2 + \sigma_n^2 - 2\vec{c}_3 \cdot \vec{\sigma}_n}}{2a_3}$$ $$x_{2n} = 1 - \frac{c_3 + \sigma_n - \sqrt{c_3^2 + \sigma_n^2 - 2\vec{c}_3 \cdot \vec{\sigma}_n}}{2a_3}$$ with $$n = N_2$$, $N_2 + 1$, · · · N₃ The above calculations represent a complete solution for the problem of determining a reconnaissance trajectory for a vehicle launched at to from a certain launch planet, making a closest approach to a certain target planet at to and returning to the launch planet. Suppose these initial conditions yield the value a = all for the departing elliptical trajectories which is of the short time type. Then by observing the formula for long-time elliptical paths if $$T = t_{cA}^{i} - t_{o} = \sqrt{\frac{a_{1}^{3}}{\mu_{s}}} \left\{ \pi + \sqrt{1 - x_{2}^{2}} + \epsilon_{i}^{-1} x_{2} + \sqrt{1 - x_{1}^{2}} + \sin^{-1} x_{1} \right\}$$ where $$x_{1} = 1 - \frac{c_{o} + Q(t_{cA}^{i}) + c_{o} Q(t_{cA}^{i})}{2a_{1}}$$ $$c_{o} + Q(t_{cA}^{i}) - c_{o}Q(t_{cA}^{i})$$ $$x_{2} = 1 - \frac{c_{o} + Q(t_{cA}^{i}) + c_{o}Q(t_{cA}^{i})}{2a_{1}}$$ yields a solution for t_{cA}^* , there will in most cases be four distinct possible reconnaissance trajectories with k = 0 taking the vehicle from the launch planet at the same launch time t_o and the same energy. - (i) short-time departing elliptical trajectory making closest approach to target planet at t cA; short time returning elliptical trajectory with k = 0. - (ii) short-time departing elliptical trajectory making closest approach to target planet at t cA; long-time returning elliptical trajectory with k = 0. - (iii) long-time departing elliptical trajectory making closest approach to target planet at t_{cA}; short-time returning trajectory, k = 0. - (iv) long-time departing elliptical trajectory making closest approach to target planet at tⁱ_{cA}; long-time returning trajectory, k = 0. It is conceivable that a reconnaissance vehicle may be required to visit more than one planet before returning to its launch planet. This, of course, would require a very accurate guidance system. Such systems will no doubt be developed, hence, we are motivated to consider such reconnaissance missions. The statement of the problem shall be formulated as follows: Assuming that the basic assumptions I, II and III hold, find a trajectory of a vahicle Saunched from the center of a given planet at the prescribed time to, which makes a closest approach to the first planet to be observed at the prescribed time to a journey of visiting N-1 more planets in a prescribed order and return to the launch planet. An example of such a reconnaissance mission may be the following: at t_{o2} the vehicle leaves the "center" of the earth and makes a closest approach to the first planet Venus at time t_{lcA} . It then proceeds to visit the remaining N-l planets in the following order: Mars Earth Saturn Pluto Jupiter Earth In this problem we shall make use of the following notation: - (a) \(\sum_{j}^{\circ} = \text{moving frame of reference centered at center of j'th} \) planet whose axes are kept parallel to the axes of a primary inertial frame \(\sum_{\chi} \) having origin fixed at center of sun \((j = 1, 2, \cdots \cdots \) \) - (b) T_j = sphere of influence of j'th planet (j = 1, ..., N) - (c) \vec{c}_{02} = position vector of launch planet and initial position vector of vehicle at beginning of mission at time t_{02} - (d) $\vec{r}_{j,1}$ $\vec{r}_{j,2}$ = position vectors of vehicle as it enters and leaves \mathcal{T}_j respectively at time t_{j1} and t_{j2} (j = 1,2,..., N) - (e) $\vec{\rho}_{j1}$, $\vec{\rho}_{j2}$ = position vectors of vehicle as it enters and leaves \mathcal{T}_{j} respectively with respect to \sum_{j}^{i} - (f) \vec{c}_{jl} , \vec{c}_{jcA} , \vec{c}_{j2} = position vectors of j'th planet when vehicle enters \mathcal{T}_j , makes its closest approach, and leaves \mathcal{T}_j respectively at time t_{jl} , t_{jcA} , and t_{j2} - (g) $\vec{c}_{N+1,1}$ = position vector of launch planet and vehicle at end of mission at time $t_{N+1,1}$ - (h) $P_j(t)$ = known position vector of j'th planet expressed as a vector function of time (j = 0,1,... N + 1) j = 0 and j = N + 1 corresponds to the launch planet - (i) $\vec{r_{ij}} \vec{r_{k\ell}} = \text{arc of trajectory from } \vec{r_{ij}} \text{ to } \vec{r_{k\ell}}$ - (j) $\vec{r}_{ij} \vec{r}_{kl}$ = distance between \vec{r}_{ij} and \vec{r}_{kl} - (k) $\vec{h}_{j,j+1}$, $\vec{\epsilon}_{j,j+1}$ = vector trajectory parameters corresponding to arc $\vec{r}_{j,2}$ $\vec{r}_{j+1,1}$ (j = 0, 1, · · · N) - (1) $\vec{h}_j = \vec{\epsilon}_j = \text{vector trajectory parameters corresponding to arc}$ $(j = 1, 2, \dots, N)$ - (m) \vec{V}_{jcA} = velocity of j'th planet when vehicle makes its closest approach at time t_{jcA} - (n) \vec{v}_{j1} , \vec{v}_{j2} = velocity of vehicle as it enters and leaves \mathcal{T}_{j} with respect to \sum - (o) $\vec{\nabla}_{j1}$, $\vec{\nabla}_{j2}$ = velocity of vehicle as it enters and leaves T_{j} with respect to \sum_{j}^{i} - (p) d = distance of closest approach to j'th planets surface (j = 1,2,..., N) - (q) R_j = radius of j'th planet - (r) $\mu_j = Gm_j$ where m_j is mass of j'th planet - (s) h = angular momentum of j'th planet. A solution (first approximation but still very close to exact solution) then proceeds by the following steps: - (i) assume c_{02} r_{11} is a short time elliptical path - (ii) calculate a_{ol} by (12) with $R_1 = \overrightarrow{c}_{o2}$, $R_2 = \overrightarrow{c}_{1CA}$, $T = t_{1CA} t_{o2}$, and $\mu = \mu_g$ - (iii) calculate ϵ_{ol} by (13) with $R_1 = c_{o2}$, $R_2 = c_{lCA}$ and $a = a_{ol}$ obtained from (ii) - (iv) calculate $\ell_{ol} = a_{ol}(1 \epsilon_{ol}^2)$ - (v) calculate \overline{h}_{ol} by (14) with \overline{c}_{o} , \overline{c}_{CA} replaced by \overline{c}_{o2} , \overline{c}_{1CA} and ℓ_{1} by ℓ_{ol} obtained from (iv) where the sign is chosen so that $\overline{h}_{ol} \cdot \overline{h}_{Po} > 0$ - (vi) calculate $\overrightarrow{\epsilon}_{o1}$ by (\overrightarrow{ab}) if \overrightarrow{ab} - (vii) assume $\widehat{r}_{12} \, \widehat{r}_{21}$ is a short-time elliptical path which makes k = 0 circuits of the sun - (viii) calculate $a_{12}(t_{2CA})$ by (19) with k = 0, $T = t_{2CA} t_{1CA}$, $R_1 = \overline{c_{1CA}}$, $R_2 = \overline{c_{2CA}} = \overline{P_2}(t_{2CA})$ $R_1R_2 = \overline{c_{1CA}P(t_{2CA})}$ (known function of t_{2CA}) - (ix) calculate $\in_{12}(t_{2CA})$ by (13) with $a = a_{12}(t_{2CA})$, $\overline{R_1} = \overline{c_{1CA}}$, $\overline{R_2} = \overline{P_2}(t_{2CA})$, $\overline{R_1R_2} = \overline{c_{1CA}P_2}(t_{2CA})$ - (x) calculate $\ell_{12}(t_{2CA}) = a_{12}(t_{2CA}) (1 \epsilon_{12}^2(t_{2CA}))$ - (xi) calculate $\overline{\ell}_{12}(t_{2CA})$ by (16) if $c_{1CA} > c_{2CA}$ or (17) if $c_{1CA} < c_{2CA}$ with $\overline{R}_1 = \overline{c}_{1CA}$, $\overline{R}_2 = \overline{P}_2(t_{2CA})$, $\ell = \ell_{12}(t_{2CA})$, $\ell = \ell_{12}(t_{2CA})$ - (xii) calculate $h_{12}(t_{2CA})$ by (14) with c_0 , c_{CA} replaced by c_{1CA} , c_{2CA} and ℓ_1 by $\ell_{12}(t_{3CA})$ where the sign is chosen so that h_{12} , $h_{P1} > 0$ - (xiii) calculate t_{2CA} explicitly by (26) with $a_1 = a_{01}$, $a_3(t_3) = a_{12}(t_{2CA})$, $\ell_1 = \ell_{01}$, $\ell_3(t_3) = \ell_{12}(t_{2CA})$ $h_1 = h_{01}$, $\hat{\epsilon}_1 = \hat{\epsilon}_{01}$, $h_3(t_3) = h_{12}(t_{2CA})$ $\hat{\epsilon}_3(t_3) = \hat{\epsilon}_{12}(t_{2CA})$ $\hat{v}_0 = \hat{v}_{1CA}$ $\hat{c}_{CA} = \hat{c}_{1CA}$, - (xiv) if above solution for t_{2CA} does not exist (i.e., not reasonable) assume $\widehat{r_{12}} \, \widehat{r_{21}}$ is a long-time elliptical path which makes k=0 circuits of the sun; if t_{2CA} has reasonable value, proceed to (xxviii) - (xv) replace (19) of (viii) by (20) and calculate $a_{12}(t_{2CA})$ - (xvi) replace (13) of (ix) by (21) and calculate $\epsilon_{12}(t_{2CA})$ - (xvii) calculate new values for $\ell_{12}(t_{2CA}) = a_{12}(t_{2CA}) (1 \epsilon_{12}^2(t_{2CA}))$ - (xviii) calculate $\epsilon_{12}(t_{2CA})$ by step (xi) replacing (16) or (17) by (18) - (xix) repeat (xii) using the new table for $\ell_{12}(t_{2CA})$ - (xx) calculate new value for t_{2CA} by repeating step (xiii) using the new value for $a_{12}(t_{2CA})$ $\ell_{12}(t_{2CA})$, $h_{12}(t_{2CA})$, $\ell_{12}(t_{2CA})$ - if new solution for t_{2CA} is still not reasonable, assume $\widehat{c_{o2}}$ r₁₁ is a long-time elliptical path; if new value for t_{2CA} is reasonable, proceed to (xxviii) - (xxii) repeat (ii) replacing (12) by (20) with k = 0 - (xxiii) repeat (iii) replacing (13) by (21) - (xxiv) repeat (iv) and (v) - (xxv) repeat (vi) by replacing (16) or (17) with (18) - (xxvi) repeat (vii) through (xx) - (xxvii) if resulting values of t_{2CA} are still not reasonable repeat (i) through (xxvi), (if necessary) replacing k = 0 with k = 1,2,... except in step (xxii) - (xxviii) calculate a_{12} , ℓ_{12} , $\vec{\epsilon}_{12}$ and \vec{h}_{12} by substituting in $a_{12}(t_{2CA})$, $\ell_{12}(t_{2CA})$ $\vec{\epsilon}_{12}(t_{2CA})$ and $\vec{h}_{12}(t_{2CA})$ the first reasonable solution for t_{2CA} - (xxix) calculate \overline{V}_{11} and \overline{V}_{12} by (5) with $\mu = \mu_s$, $\hat{R} = \hat{c}_{1CA}$, $\hat{h} = \overline{h}_{01}$, $\hat{\epsilon} = \overline{\hat{\epsilon}}_{01}$, and $\hat{h} = \hat{h}_{12}$, $\hat{\epsilon} = \overline{\hat{\epsilon}}_{12}$, respectively - (xxx) calculate \overrightarrow{V}_{11} and \overrightarrow{V}_{12} by (24) with $\overrightarrow{V}_{Q} = \overrightarrow{V}_{1CA}$ $\overrightarrow{V} = \overrightarrow{V}_{11}$ and $\overrightarrow{V} = \overrightarrow{V}_{12}$, respectively - (xxxi) calculate a_1 by (29) and (30) with $v_1^2 = v_{11}^2$,
$v_2^2 = v_{12}^2$, $\mu_Q = \mu_1$ - (xxxii) calculate \in_1 by (31) with $\overline{V}_1 = \overline{V}_{11}$, $\overline{V}_2 = \overline{V}_{12}$ (xxxiii) calculate $d_1 = a_1(\xi_1 - 1) - R_1$ If $d_1 > 0$, repeating (vii) through (xxxiii) with j = 1 replaced by j = 2 will yield d_2 . If $d_2 > 0$ (vii) through (xxxiii) are repeated replacing j = 2 by j = 3 yielding d_3 . This process is repeated until either all $d_j > 0$ or stops when the first $d_i < 0$, in which case, the next best value of t_{iCA} is calculated and the process is continued. When all $d_j > 0$ the calculation continues by calculating f(x) = 1. (j = 1,2,...N) by (34) and (35) by replacing V_1 , V_2 by V_{j1} , V_{j2} and $E_2 = E_j$, $E_2 = E_j = \sqrt{E_j \mu_j} = \sqrt{e_j (E_j^2 - 1) \mu_j}$ calculate the amount of time $(\Delta t)_j$ the vehicle spends in γ_j by (11) with $\Delta t = (\Delta t)_j$ a = a_j, $\mu = \mu_j$, m = m_j = mass of j'th planet $\mathcal{E} = \mathcal{E}_j$ calculate t_{j1} and t_{j2} by (38) with t₁ = t_{j1}, t₂ = t_{j2}, t_{CA} = t_{jCA} $\Delta t = (\Delta t)_j$ (j = 1,2,...,N) calculate $\overrightarrow{\mathcal{E}}_{j1}$ and $\overrightarrow{\mathcal{E}}_{j2}$ by (36) and (37) with $\mu_Q = \mu_j$, $\overrightarrow{V}_1' = \overrightarrow{V}_{11}'$, m = m_j, $-\overrightarrow{V}_2' = \overrightarrow{V}_{12}'$ calculate \overrightarrow{r}_{j1} and \overrightarrow{r}_{j2} by (39) with $\overrightarrow{r}_1 = \overrightarrow{r}_{j1}$, $\overrightarrow{c}_1 = \overrightarrow{P}_j(t_{j1})$, $\overrightarrow{c}_2 = \overrightarrow{P}_j(t_{j2})$, $\overrightarrow{P}_1 = \overrightarrow{P}_{j1}$, $\overrightarrow{P}_2 = \overrightarrow{P}_{j2}$ The complete solution $\{\vec{v}_n\}$, $\{\vec{v}_n\}$, $\{t_n\}$ can now be calculated by employing the formulas developed on pages 27-30 in the same fashion as was done for the case N=1. Before this calculation begins $\{\vec{v}_n\}_{j,j+1}$, $\{\vec{v}_n\}_{j,j+$ In conclusion, we notice the remarkable fact that if E is the total heliocentric energy of a departing free-fall reconnaissance vehicle to one planet and back, it may be possible to send the vehicle on a trajectory which will take it to N-1 more planets before returning to its launch planet without any appreciable change in E. ## APPENDIX One may proceed by the following method of successive approximations to obtain values of $\overline{c_1}$, $\overline{h_1}$ $\overline{c_2}$ $\overline{h_2}$, $\overline{c_3}$ $\overline{h_3}$ and $\overline{r_1}$ $\overline{r_2}$ $\overline{c_1}$ $\overline{c_2}$ corresponding to a round-trip reconnaissance trajectory to one planet and back which are arbitrarily close to the exact values of these quantities. In cases where N>1 the process is very similar to that given below and hence will not be explicitly written out. Suppose $\vec{\xi}_1^{(k)} = \vec{h}_1^{(k)} \vec{h}_1^{(k)$ tion of these quantities. The k+l'th approximation can be calculated as follows: calculate $a_1^{(k+1)}$ by (12) with $\overline{R}_1 = \overline{C}_1$, $\overline{R}_2 = \overline{r}_1^{(k)}$, $\overline{r} = t_1^{(k)} - t_2^{(k)}$ calculate $\in (k+1)$ by (13) with $R_1 = \overline{C}$, $R_2 = \overline{R}$, $R_3 = \overline{R}$ calculate $\vec{\xi}_1^{(k+1)}$ by same formula used to calculate $\vec{\xi}_1^{(k)}$ with $\ell = \ell_1^{(k+1)} = a_1^{(k+1)} (1 - \epsilon_1^{(k+1)}) \overrightarrow{R_1} = \overrightarrow{c_0}, \overrightarrow{R_0} = \overrightarrow{r_1}^{(k)}$ calculate $h_1^{(k+1)}$ by same formula used to calculate $h^{(k)}$ with $R_1 = C_1$, $\overrightarrow{R}_0 = \overrightarrow{r}_1^{(k)}$ $\mathcal{L} = \mathcal{L}_1^{(k+1)}$ calculate $a_3^{(k+1)}$ $(t_3^{(k+1)})$ by same formula used to calculate $a_3^{(k)}(t_3^{(k)})$ with $\vec{R}_1 = \vec{r}_2^{(k)}$, $\vec{R}_2 = \vec{P}(t_3^{(k+1)})$ $\vec{T} = t_3^{(k+1)} - t_2^{(k)}$, $\vec{a} = \vec{a}_3^{(k+1)}(t_3^{(k+1)})$ calculate $\epsilon_3^{(k+1)}(t_3^{(k+1)})$ by same formula used to calculate $\epsilon_3^{(k)}(t_3^{(k)})$ with $\vec{R}_1 = \vec{r}_2^{(k)}$ $\vec{R}_2 = \vec{P}(t_3^{(k+1)})$ $a = a_3^{(k+1)}(t_3^{(k+1)})$ calculate $\mathcal{L}_{3}^{(k+1)}(t_{3}^{(k+1)}) = a_{3}^{(k+1)}(t_{3}^{(k+1)}) \left[1 - \epsilon_{3}^{(k+1)^{2}}(t_{3}^{(k+1)})\right]$ calculate $\vec{\xi}_3^{(k+1)}(t_3^{(k+1)})$ by same formula used to calculate $\vec{\xi}_3^{(k)}(t_3^{(k)})$ with $\ell = \ell_3^{(k+1)}(t_3^{(k+1)}), \overline{R}_1 = r_2^{(k)} \overline{R}_2 = \overline{P}(t_3^{(k+1)})$ calculate $h_3^{(k+1)}(t_3^{(k+1)})$ by same formula used to calculate $h_3^{(k)}(t_3^{(k)})$ with $\ell = \ell_{3}^{(k+1)}(t_{3}^{(k+1)})$ calculate $h_3^{(k+1)}(t_3^{(k+1)})$ by same formula used to calculate $h_3^{(k)}(t_3^{(k)})$ with $\overline{R}_1 = \overline{r}_2^{(k)}$, $\overline{R}_2 = \overline{P}(t_3^{(k+1)})$ $h = h_3^{(k+1)}(t_3^{(k+1)})$ calculate t3 (k+1) explicitly by same formula used to calculate t3 (k) with $a_1 = a_1^{(k+1)}$ $a_3 = a_3^{(k+1)}(t_3^{(k+1)}), \quad \ell_3 = \ell_3^{(k+1)}(t_3^{(k+1)}), \quad h_3 = h_3^{(k+1)}(t_3^{(k+1)})$ $\hat{\mathbf{r}}_1^{(k-1)}$ and $\hat{\mathbf{r}}_2^{(k-1)}$ replaced by $\hat{\mathbf{r}}_1^{(k)}$ and $\hat{\mathbf{r}}_2^{(k)}$ $\vec{\epsilon}_3 = \vec{\epsilon}_3^{(k+1)}(\mathbf{t}_3^{(k+1)})$ $\ell_1 = \ell_1^{(k+1)}, \ \vec{h}_1 = \vec{h}_1^{(k+1)}, \ \vec{\ell}_1 = \vec{\ell}_1^{(k+1)}$ calculate $a_3^{(k+1)} \overrightarrow{f_3}^{(k+1)}$ and $\overrightarrow{h_3}^{(k+1)}$ explicitly by substituting the value of $t_{x}^{(k+1)}$ into $a_{x}^{(k+1)}(t_{x}^{(k+1)})$, and $h_{x}^{(k+1)}(t_{x}^{(k+1)})$ calculate a (k+1) by same formula used to caluclate a (k) with $\vec{V}_1^{(k-1)}$ and $\overrightarrow{V}_{2}(k-1)'$ replaced by $\overrightarrow{V}_{1}(k)'$ and $\overrightarrow{V}_{2}(k)'$ calculate $\epsilon_2^{(k+1)}$ by same formula used to calculate $\epsilon_2^{(k)}$ with $\vec{V}_1^{(k-1)}$ and $\overrightarrow{V}_{2}(k-1)'$ replaced by $\overrightarrow{V}_{1}(k)'$ and $\overrightarrow{V}_{2}(k)'$ calculate d(k+1) by same formula used to calculate d(k) with (2 k) and a2 k) replaced by $\binom{(k+1)}{2}$ and $a_2^{(k+1)}$ calculate $(\Delta t)^{(k+1)}$ by same formula used to calculate $(\Delta t)^k$ with $\epsilon_2^{(k)}$, $a_2^{(k)}$ replaced by (k+1) and $a_2^{(k+1)}$ calculate $t_1^{(k+1)}$, $t_2^{(k+1)}$ by (38) with Δt replaced by $(\Delta t)^{(k+1)}$ calculate $\vec{c}_1^{(k+1)}$ and $\vec{c}_2^{(k+1)}$ by substituting $t_1^{(k+1)}$ and $t_2^{(k+1)}$ into $\vec{Q}(t)$ calculate $\overrightarrow{C}_1^{(k+1)}$ and $\overrightarrow{C}_2^{(k+1)}$ by (36) and (37) with $\overrightarrow{V}_1' = \overrightarrow{V}_1^{(k)}, \overrightarrow{V}_2' = \overrightarrow{V}_2^{(k)},$ $\overrightarrow{h}_2 = \overrightarrow{h}_2^{(k+1)} \overrightarrow{\xi}_2 = \overrightarrow{\xi}_2^{(k+1)}$ calculate $\overrightarrow{r}_1^{(k+1)}$ and $\overrightarrow{r}_2^{(k+1)}$ by (39) with $\overrightarrow{c}_1 = \overrightarrow{c}_1^{(k+1)}$, $\overrightarrow{c}_2 = \overrightarrow{c}_2^{(k+1)}$, P. = P(k+1), P = Pk+1 calculate $\overrightarrow{V}_1^{(k+1)}$, $\overrightarrow{V}_2^{(k+1)}$ same formula used to calculate $\overrightarrow{V}_1^{(k)}$ and $\overrightarrow{V}_2^{(k)}$ replacing k by k+l A continuation of the above calculations letting k = 1, 2, ... will yield values of \vec{t}_1 \vec{h}_2 , ... \vec{h}_3 , which will be arbitrarily close to the exact values of these of these quantities. ## REFERENCES - 1. Brand, Y., "Vector Analysis" (John Wiley & Sons, Inc.) 1957; Sec. 61. - 2. Minovich, M., Technical Memo #312-118. - 3. Tisserand, F., "Traite de Mecanique Celeste", Tome IV, Page 198; 1889.