Anderson, D. G., et al. (2011). Multiple lines of evidence for possible human population decline/settlement reorganization during the early Younger Dryas. Quaternary International, 242(2), 570–583.
Arakawa, M., Shirai, K., & Kato, M. (2000). Shock wave and fracture propagation in water ice by high velocity impact. Geophysical Research Letters, 27(3), 305–308. https://doi.org/10.1029/1999GL010841
Blewett, W. L., Winters, H. A., & Rieck, R. L. (1993). New age control on the Port Huron moraine in Northern Michigan. Physical Geography, 14(2), 131–138.
Boslough, M., et al. (2012). Arguments and evidence against a Younger Dryas impact event. In Geophysical Monograph Series (Vol. 198, pp. 13–26). American Geophysical Union. https://doi.org/10.1029/2012GM001209
Boslough, M., et al. (2013). Younger Dryas impact model confuses comet facts, defies airburst physics. Proceedings of the National Academy of Sciences, 110(45), E4170. https://doi.org/10.1073/pnas.1313495110
Brooks, M. J., Taylor, B. E., & Ivester, A. H. (2010). Carolina bays: Time capsules of culture and climate change. Southeastern Archaeology, 29(1), 146–163.
Brunnschweiler, R. O. (1974). New K-Ar age determinations from the West African Shield in the Niger Republic. Geology, 2(1), 17–20. https://doi.org/10.1130/0091-7613(1974)2<17:NKADFT>2.0.CO;2
Bunch, T. E., Hermes, R. E., Moore, A. M. T., Kennett, D. J., Weaver, J. C., Wittke, J. H., DeCarli, P. S., Bischoff, J. L., Hillman, G. C., Howard, G. A., Kimbel, D. R., Kletetschka, G., Lipo, C. P., Sakai, S., Revay, Z., West, A., Firestone, R. B., & Kennett, J. P. (2012). Very high-temperature impact melt products as evidence for cosmic airbursts and impacts 12,900 years ago. Proceedings of the National Academy of Sciences, 109(28), E1903–E1912. https://doi.org/10.1073/pnas.1204453109
Carter, M. W., & McLaurin, B. T. (2019). Paleoliquefaction field reconnaissance in eastern North Carolina—Is there evidence for large magnitude earthquakes between the Central Virginia Seismic Zone and Charleston Seismic Zone? U.S. Geological Survey Scientific Investigations Report 2019–5057, 54. https://doi.org/10.3133/sir20195057
Catalano, R., et al. (2008). Ambient temperature predicts sex ratios and male longevity. Proceedings of the National Academy of Sciences, 105(6), 2244–2247.
Colgan, W., & Arenson, L. (2013). Open-pit glacier ice excavation: Brief review. Journal of Cold Regions Engineering, 27(4). https://doi.org/10.1061/(ASCE)CR.1943-5495.0000057
https://www.williamcolgan.net/pubs/asce.cr.1943-5495.0000057.pdf
Cooke, C. W. (1954). Carolina Bays and the shapes of eddies. USGS Professional Paper 254-I.
Cottrell, C., & Zamora, A. (2025). Interpreting the Geomorphology of Carolina Bays as Secondary Impact Structures. Journal of Environmental & Earth Sciences, 7(6), 111–124. https://doi.org/10.30564/jees.v7i6.8876
PDF: https://journals.bilpubgroup.com/index.php/jees/article/view/8876/6328
Dalton, A. S., et al. (2020). An updated radiocarbon-based ice margin chronology for the last deglaciation of the North American Ice Sheet Complex. Quaternary Science Reviews, 234, 106223. https://doi.org/10.1016/j.quascirev.2020.106223
Davias, M., & Gilbride, J. L. (2010, October 31–November 3). Correlating an impact structure with the Carolina Bays [Paper presentation]. GSA Denver Annual Meeting, Denver, CO, United States. https://gsa.confex.com/gsa/2010AM/webprogram/Paper176757.html
Davias, M., & Gilbride, J. L. (2011, October 12). LiDAR digital elevation maps employed in Carolina Bay survey [Paper presentation]. GSA Meeting, Minneapolis, MN, United States.
Davias, M. (2023). LiDAR high resolution topology model (HRTM) map of the 48 contiguous United States. http://lidar-hrtm.cintos.org/
Davias, M., & Harris, T. (2015, May 19–20). A tale of two craters: Coriolis-aware trajectory analysis correlates two Pleistocene impact strewn fields and gives Michigan a thumb [Paper presentation]. Geological Society of America, North-Central Section - 49th Annual Meeting, United States.
Davias, M., & Harris, T. (2021, March 1). An incomprehensible cosmic impact at the Mid Pleistocene Transition: Searching for the missing crater using Australasian tektite suborbital analysis and Carolina Bays’ major axes triangulation. ESS Open Archive. https://doi.org/10.1002/essoar.10506350.2
Davias, M.E., Harris, T.H.S., 2022. Postulating an unconventional location for the missing Mid Pleistocene transition impact: repaving North America with a cavitated regolith blanket while dispatching Australasian Tektites and giving Michigan a thumb. In: Foulger, G., Hamilton, L.C., Jurdy, D.M., Stein, C.A., Howard, K.A., Stein, S. (Eds.), In the Footsteps of Warren B. New Ideas in Earth Science, Hamilton, pp. 293–322. https://doi.org/10.1130/2021.2553(24). Geological Society of America Special Paper 553.
Dyke, A. S., et al. (2002). The Laurentide and Innuitian ice sheets during the Last Glacial Maximum. Quaternary Science Reviews, 21(1–3), 9–31.
Eimers, J. L., Terziotti, S., & Giorgino, M. (2001). Estimated depth to water, North Carolina. Open File Report 01-487.
Eschman, D. F., & Mickelson, D. M. (1986). Correlation of glacial deposits of the Huron, Lake Michigan and Green Bay lobes in Michigan and Wisconsin. Quaternary Science Reviews, 5, 53–57. https://doi.org/10.1016/0277-3791(86)90173-3
Eyton, J. R., & Parkhurst, J. I. (1975). A re-evaluation of the extraterrestrial origin of the Carolina Bays. Geography Graduate Student Association, University of Illinois, Urbana-Champaign. http://www.defendgaia.org/bobk/cbayint.html
Firestone, R., West, A., & Warwick-Smith, S. (2006). The cycle of cosmic catastrophes: How a Stone-Age comet changed the course of world culture. Bear & Company.
Firestone, R. B., et al. (2007). Evidence for an extraterrestrial impact 12,900 years ago that contributed to the megafaunal extinctions and the Younger Dryas cooling. Proceedings of the National Academy of Sciences, 104(41), 16016–16021.
Firestone, R. B. (2009). The case for the Younger Dryas extraterrestrial impact event: Mammoth, megafauna, and Clovis extinction, 12,900 years ago. Journal of Cosmology, 2, 256–285. https://escholarship.org/uc/item/8fj3d8mc
Firestone, R. B., et al. (2010). Analysis of the Younger Dryas impact layer. Journal of Siberian Federal University. Engineering & Technologies, 3(1), 30–62.
French, B. M., & Koeberl, C. (2010). The convincing identification of terrestrial meteorite impact structures: What works, what doesn’t, and why. Earth-Science Reviews, 98(1–2), 123–170. https://doi.org/10.1016/j.earscirev.2009.10.009
French, H. M., & Millar, S. W. S. (2014). LGM permafrost in North America. Boreas, 43(3), 667–677. https://doi.org/10.1111/bor.12036
Goldthwait, R. P. (1952). Geological situation of the Orleton Farms Mastodon. The Ohio Journal of Science, 52(1), 5–9. http://hdl.handle.net/1811/3889
Goodwin, B. K., & Johnson, G. H. (1970, October 17–18). Geology of the upland gravels near Midlothian, Virginia. Eleventh Annual Field Conference of the Atlantic Coastal Plain Geological Association.
Haynes, C. V., Jr. (2008). Younger Dryas “black mats” and the Rancholabrean termination in North America. Proceedings of the National Academy of Sciences, 105(18), 6520–6525. https://doi.org/10.1073/pnas.0800560105
Holliday, V. T., Daulton, T. L., Bartlein, P. J., Boslough, M. B., Breslawski, R. P., Fisher, A. E., Jorgeson, I. A., Scott, A. C., Koeberl, C., Marlon, J., Severinghaus, J., Petaev, M. I., & Claeys, P. (2023). Comprehensive refutation of the Younger Dryas Impact Hypothesis (YDIH). Earth-Science Reviews, 104502. https://doi.org/10.1016/j.earscirev.2023.104502
Israde-Alcántara, I., et al. (2012). Evidence from Central Mexico supporting the Younger Dryas extraterrestrial impact hypothesis. Proceedings of the National Academy of Sciences, 109(13), E738–E747. https://doi.org/10.1073/pnas.1110614109
Jacobson, R. B., et al. (1989). The role of catastrophic geomorphic events in Central Appalachian landscape evolution. Geomorphology, 2(1–3), 257–284. https://doi.org/10.1016/0169-555X(89)90015-9
Johnson, D. (1942). The origin of the Carolina Bays. Columbia University Press.
Kaczorowski, R. T. (1977). The Carolina Bays: A comparison with modern oriented lakes (Technical Report No. 13-CRD). Coastal Research Division, Department of Geology, University of South Carolina.
Karmin, M., et al. (2015). A recent bottleneck of Y chromosome diversity coincides with a global change in culture. Genome Research, 25(4), 459–466. https://doi.org/10.1101/gr.186684.114
Kennett, J. P., et al. (2015). Bayesian chronological analyses consistent with synchronous age of 12,835–12,735 Cal B.P. for Younger Dryas boundary on four continents. Proceedings of the National Academy of Sciences, 112(32), E4344–E4353. https://doi.org/10.1073/pnas.1507146112
Kenny, G. G., et al. (2022). A Late Paleocene age for Greenland’s Hiawatha impact structure. Science Advances, 8(10), eabm2434. https://doi.org/10.1126/sciadv.abm2434
Kinzie, C., et al. (2014). Nanodiamond-rich layer across three continents consistent with major cosmic impact at 12,800 Cal BP. The Journal of Geology, 122(5), 475–506. https://doi.org/10.1086/677046
Kjær, K. H., et al. (2018). A large impact crater beneath Hiawatha Glacier in northwest Greenland. Science Advances, 4(11), eaar8173. https://doi.org/10.1126/sciadv.aar8173
Kletetschka, G., et al. (2025). New evidence of high-temperature, high-pressure processes at the site of the 1908 Tunguska event: Implications for impact and airburst phenomena. Airbursts and Cratering Impacts, 3(1), 1–26. https://doi.org/10.14293/ACI.2025.0001
Klokočník, J., Kostelecký, J., & Bezděk, A. (2019). The putative Saginaw impact structure, Michigan, Lake Huron, in the light of gravity aspects derived. Journal of Great Lakes Research, 45(1), 12–20. https://doi.org/10.1016/j.jglr.2018.11.013
Kuzila, M. S. (1994). Inherited morphologies of two large basins in Clay County, Nebraska. Great Plains Research, 4(1), 51–63. https://digitalcommons.unl.edu/greatplainsresearch/155/
Larson, G., & Schaetzl, R. (2001). Origin and evolution of the Great Lakes. Journal of Great Lakes Research, 27(4), 518–546. https://doi.org/10.1016/S0380-1330(01)70665-X
LeCompte, M. A., et al. (2012). Independent evaluation of conflicting microspherule results from different investigations of the Younger Dryas impact hypothesis. Proceedings of the National Academy of Sciences, 109(44), E2960–E2969. https://doi.org/10.1073/pnas.1208603109
Leydet, D. J., et al. (2018). Opening of glacial Lake Agassiz’s eastern outlets by the start of the Younger Dryas cold period. Geology, 46(2), 155–158. https://doi.org/10.1130/G39501.1
Little, E. M., et al. (1972). Field measurement of light penetration through sea ice. Arctic, 25(1), 28–33.
Lundine, M. A., & Trembanis, A. C. (2021). Using convolutional neural networks for detection and morphometric analysis of Carolina Bays from publicly available digital elevation models. Remote Sensing, 13(18), 3770. https://doi.org/10.3390/rs13183770
Lundine, M., & Trembanis, A. (2025). Investigating the origin and dynamics of Carolina Bays. Marine Geology, 480, 107449. https://doi.org/10.1016/j.margeo.2024.107449
Luther, R., et al. (2015, March). Snow compaction during the Chelyabinsk meteorite fall. 46th Lunar and Planetary Science Conference.
Marlon, J. R., et al. (2009). Wildfire responses to abrupt climate change in North America. Proceedings of the National Academy of Sciences, 106(8), 2519–2524. https://doi.org/10.1073/pnas.0808212106
Melosh, H. J. (1979). Acoustic fluidization: A new geologic process? Journal of Geophysical Research: Solid Earth, 84(B13), 7513–7520. https://doi.org/10.1029/JB084iB13p07513
Melosh, H. J. (1989). Impact cratering: A geologic process. Oxford University Press.
Melosh, H. J. (2011). Planetary surface processes. Cambridge University Press.
Melton, F. A., & Schriever, W. (1933). The Carolina “Bays”—Are they meteorite scars? The Journal of Geology, 41(1), 52–66.
Melton, F. A. (1956). Review of Carolina Bays and the shapes of eddies by C. Wythe Cooke. The Journal of Geology, 64(3), 301–304.
Moore, C. R., & Brooks, M. (2011, March 23–25). Evidence for widespread eolian activity in the coastal plain uplands of North and South Carolina revealed by high-resolution LiDAR data [Paper presentation]. GSA Southeastern Section - 60th Annual Meeting, United States. https://doi.org/10.13140/2.1.2757.5687
Moore, C. R., et al. (2012, November). Carolina Bay formation and evolution: Kaczorowski was right! [Paper presentation]. GSA Annual Meeting and Exposition, Charlotte, NC, United States.
Moore, C. R., et al. (2012). Radiocarbon and luminescence dating at Flamingo Bay (38AK469): Implications for site formation processes and artifact burial at a Carolina Bay. Legacy, 16(1), 16–21. https://scholarcommons.sc.edu/cgi/viewcontent.cgi?article=1279&context=sciaa_staffpub
Moore, C. R., Brooks, M. J., Mallinson, D. J., Parham, P. R., Ivester, A. H., & Feathers, J. K. (2016). The Quaternary evolution of Herndon Bay, a Carolina Bay on the coastal plain of North Carolina (USA): Implications for paleoclimate and oriented lake genesis. Southeastern Geology, 51(4), 145–171.
Moore, C. R., et al. (2017). Widespread platinum anomaly documented at the Younger Dryas onset in North American sedimentary sequences. Scientific Reports, 7, 44031. https://doi.org/10.1038/srep44031
Moore, C. R., Brooks, M. J., Goodyear, A. C., et al. (2019). Sediment cores from White Pond, South Carolina, contain a platinum anomaly, pyrogenic carbon peak, and coprophilous spore decline at 12.8 ka. Scientific Reports, 9, 15121. https://doi.org/10.1038/s41598-019-51552-8
Moore, C. R., et al. (2024). Platinum, shock-fractured quartz, microspherules, and meltglass widely distributed in Eastern USA at the Younger Dryas onset (12.8 ka). Airbursts and Cratering Impacts, 2(1), 1–31. https://doi.org/10.14293/ACI.2024.0003
Morris, T. (2008). Synthesis of information on Quaternary geology in the vicinity of the St Clair River. http://iugls.org/DocStore/ProjectArchive/SED_StClairSediment/SED01_Morris_StClairQuaternaryGeologySynthesis/Reports/SED01-R1_Morris.pdf
Napier, W. M. (2010). Paleolithic extinctions and the Taurid Complex. Monthly Notices of the Royal Astronomical Society, 405(3), 1901–1906.
Nelson, M. S., et al. (2015). User guide for luminescence sampling in archaeological and geological contexts. Advances in Archaeological Practice, 3(2), 166–177. https://doi.org/10.7183/2326-3768.3.2.166
Paz Sepúlveda, P. B., Mayordomo, A. C., Sala, C., Sosa, E. J., Zaiat, J. J., Cuello, M., et al. (2022). Human Y chromosome sequences from Q Haplogroup reveal a South American settlement pre-18,000 years ago and a profound genomic impact during the Younger Dryas. PLoS ONE, 17(8), e0271971. https://doi.org/10.1371/journal.pone.0271971
Petaev, M. I., Huang, S., Jacobsen, S. B., & Zindler, A. (2013). Large Pt anomaly in the Greenland ice core points to a cataclysm at the onset of Younger Dryas. Proceedings of the National Academy of Sciences, 110(34), 12917–12920. https://doi.org/10.1073/pnas.1303924110
Petaev, M. I., Huang, S., Jacobsen, S. B., & Zindler, A. (2013, March). Large platinum anomaly in the GISP2 ice core: Evidence for a cataclysm at the Bølling-Allerød/Younger Dryas boundary? 44th Lunar and Planetary Science Conference.
Pino, M., et al. (2019). Sedimentary record from Patagonia, southern Chile supports cosmic-impact triggering of biomass burning, climate change, and megafaunal extinctions at 12.8 ka. Scientific Reports, 9, 4413. https://doi.org/10.1038/s41598-018-38089-y
Pinter, N., Scott, A. C., Daulton, T. L., Podoll, A., Koeberl, C., Anderson, R. S., & Ishman, S. E. (2011). The Younger Dryas impact hypothesis: A requiem. Earth-Science Reviews, 106(3–4), 247–264. https://doi.org/10.1016/j.earscirev.2011.02.005
Preston, C. D., & Brown, C. Q. (1964). Geologic section along a Carolina Bay, Sumter County, S. C. Southeastern Geology, 6, 21–29.
Prouty, W. F. (1952). Carolina Bays and their origin. Bulletin, Geological Society of America, 63(2), 167–224.
Raisz, E. (1934). Rounded lakes and lagoons of the coastal plains of Massachusetts. The Journal of Geology, 42(8), 839–848.
Robbins, S. J., et al. (2014). The variability of crater identification among expert and community crater analysts. Icarus, 234, 109–131. https://doi.org/10.1016/j.icarus.2014.02.022
Savage, H. (1982). The mysterious Carolina Bays. University of South Carolina Press.
Schaetzl, R. J., Sauck, W., Heinrich, P. V., Colgan, P. M., & Holiday, V. T. (2019). Commentary on Klokočník, J., Kostelecký, and Bezděk, A. 2019. The putative Saginaw impact structure, Michigan, Lake Huron, in the light of gravity aspects derived from recent EIGEN 6C4 gravity field model. Journal of Great Lakes Research, 45(5), 1003–1006.
Schulson, E. M. (1999). The structure and mechanical behavior of ice. JOM, 51(2), 21–27. https://www.tms.org/pubs/journals/jom/9902/schulson-9902.html
Shuvalov, V., & Dypvik, H. (2013). Distribution of ejecta from small impact craters. Meteoritics & Planetary Science, 48(6), 1034–1042. https://doi.org/10.1111/maps.12127
Silber, E. A., et al. (2021). Effect of ice sheet thickness on formation of the Hiawatha impact crater. Earth and Planetary Science Letters, 566, 116972. https://doi.org/10.1016/j.epsl.2021.116972
Stickle, A. M., & Schultz, P. H. (2012). Subsurface damage from oblique impacts into low-impedance layers. Journal of Geophysical Research: Planets, 117(E7), E07006. https://doi.org/10.1029/2011JE004043
Sweatman, M. B., Powell, J. L., & West, A. (2024). Rejection of Holliday et al.’s alleged refutation of the Younger Dryas impact hypothesis. Earth-Science Reviews, 258, 104960. https://doi.org/10.1016/j.earscirev.2024.104960
Swezey, C. S. (2020). Quaternary eolian dunes and sand sheets in inland locations of the Atlantic Coastal Plain Province. In N. Lancaster & P. Hesp (Eds.), Inland dunes of North America (pp. 11–63). Springer Publishing. https://doi.org/10.1007/978-3-030-40498-7_2
Teller, J., Boyd, M., LeCompte, M., Kennett, J., West, A., Telka, A., et al. (n.d.). A multi-proxy study of changing environmental conditions in a Younger Dryas sequence in southwestern Manitoba, Canada, and evidence for an extraterrestrial event. Quaternary Research. https://doi.org/10.1017/qua.2019.46
Thackeray, J. F., Scott, L., & Pieterse, P. (2019). The Younger Dryas interval at Wonderkrater (South Africa) in the context of a platinum anomaly. Palaeontologia Africana, 54, 30–35.
Thom, B. G. (1970). Carolina Bays in Horry and Marion Counties, South Carolina. Bulletin, Geological Society of America, 81(3), 783–814. https://doi.org/10.1130/0016-7606(1970)81[783:CBIHAM]2.0.CO;2
Thomas, E. S. (1952). The Orleton Farms Mastodon. The Ohio Journal of Science, 52(1), 1–5. http://hdl.handle.net/1811/3888
USGS. (2016, November 21). Luminescence dating—Introduction and overview of the technique. https://gec.cr.usgs.gov/projects/lumlab/overview.shtml
van der Pluijm, B., & Marshak, S. (2020). Processes in structural geology & tectonics. University of Michigan. https://psgt.earth.lsa.umich.edu/
Vogt 2008 (doi: 10.1121/1.2996304) Vogt (2008). https://pubs.aip.org/asa/jasa/article-abstract/124/6/3613/898748/Speed-of-sound-in-bubble-free-ice?redirectedFrom=fulltext
Wickert, A. D., Williams, C., Gregoire, L. J., Callaghan, K. L., Ivanović, R. F., Valdes, P. J., et al. (2023). Marine-calibrated chronology of southern Laurentide Ice Sheet advance and retreat: ∼2,000-year cycles paced by meltwater–climate feedback. Geophysical Research Letters, 50(11), e2022GL100391. https://doi.org/10.1029/2022GL100391
Wittke, J. H., et al. (2013). Evidence for deposition of 10 million tonnes of impact spherules across four continents 12,800 y ago. Proceedings of the National Academy of Sciences, 110(23), E2088–E2097. https://doi.org/10.1073/pnas.1301760110
Wolbach, W. S., et al. (2018a). Extraordinary biomass-burning episode and impact winter triggered by the Younger Dryas cosmic impact ~12,800 years ago. 1. Ice cores and glaciers. The Journal of Geology, 126(2), 165–184. https://doi.org/10.1086/695703
Wolbach, W. S., et al. (2018b). Extraordinary biomass-burning episode and impact winter triggered by the Younger Dryas cosmic impact ∼12,800 years ago. 2. Lake, marine, and terrestrial sediments. The Journal of Geology, 126(2), 185–205. https://doi.org/10.1086/695704
Youd, T., et al. (2001). Liquefaction resistance of soils: Summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils. Journal of Geotechnical and Geoenvironmental Engineering, 127(10), 817–833. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:10(817)
Zamora, A. (2015). Solving the mystery of the Carolina Bays. Kindle eBook.
Zamora, A. (2017). A model for the geomorphology of the Carolina Bays. Geomorphology, 282, 209–216. https://doi.org/10.1016/j.geomorph.2017.01.019
Zamora, A. (2020, 2022). The neglected Carolina Bays: Ubiquitous geological evidence of a cataclysm. https://amzn.to/4dqrcRY
Zamora, A. (2022). Python program for fitting ellipses to the Carolina Bays by the least squares method. https://github.com/citpeks/Carolina-Bays-least-squares-ellipse-fitting
Zamora, A. (2025). Reply to Holliday et al. regarding the Carolina Bays. Earth-Science Reviews, 261, 105024. https://doi.org/10.1016/j.earscirev.2024.105024
Zanner, W., & Kuzila, M. S. (2001, October). Nebraska’s Carolina Bays [Paper presentation]. GSA Annual Meeting, United States. https://gsa.confex.com/gsa/2001AM/webprogram/Paper22324.html
Zeng, T. C., Aw, A. J., & Feldman, M. W. (2018). Cultural hitchhiking and competition between patrilineal kin groups explain the post-Neolithic Y-chromosome bottleneck. Nature Communications, 9, 2077. https://doi.org/10.1038/s41467-018-04375-6